Lalam Nadia
EURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
J Theor Biol. 2006 Oct 21;242(4):947-53. doi: 10.1016/j.jtbi.2006.06.001. Epub 2006 Jun 9.
Polymerase chain reaction (PCR) is largely used in molecular biology for increasing the copy number of a specific DNA fragment. The succession of 20 replication cycles makes it possible to multiply the quantity of the fragment of interest by a factor of 1 million. The PCR technique has revolutionized genomics research. Several quantification methodologies are available to determine the DNA replication efficiency of the reaction which is the probability of replication of a DNA molecule at a replication cycle. We elaborate a quantification procedure based on the exponential phase and the early saturation phase of PCR. The reaction efficiency is supposed to be constant in the exponential phase, and decreasing in the saturation phase. We propose to model the PCR amplification process by a branching process which starts as a Galton-Watson branching process followed by a size-dependent process. Using this stochastic modelling and the conditional least-squares estimation method, we infer the reaction efficiency from a single PCR trajectory.
聚合酶链反应(PCR)在分子生物学中被广泛用于增加特定DNA片段的拷贝数。20个复制循环的连续进行使得目标片段的数量能够增加100万倍。PCR技术彻底改变了基因组学研究。有几种定量方法可用于确定反应的DNA复制效率,即DNA分子在一个复制循环中复制的概率。我们基于PCR的指数期和早期饱和期制定了一种定量程序。反应效率在指数期被认为是恒定的,而在饱和期则会下降。我们建议通过一个分支过程对PCR扩增过程进行建模,该过程一开始是高尔顿-沃森分支过程,随后是一个与大小相关的过程。使用这种随机建模和条件最小二乘估计方法,我们从单个PCR轨迹推断反应效率。