Rao Xiayu, Lai Dejian, Huang Xuelin
Division of Biostatistics, The University of Texas School of Public Health, Houston, Texas, USA.
J Comput Biol. 2013 Sep;20(9):703-11. doi: 10.1089/cmb.2012.0279. Epub 2013 Jul 10.
Quantitative real-time polymerase chain reaction (qPCR) is a sensitive gene quantification method that has been extensively used in biological and biomedical fields. The currently used methods for PCR data analysis, including the threshold cycle method and linear and nonlinear model-fitting methods, all require subtracting background fluorescence. However, the removal of background fluorescence can hardly be accurate and therefore can distort results. We propose a new method, the taking-difference linear regression method, to overcome this limitation. Briefly, for each two consecutive PCR cycles, we subtract the fluorescence in the former cycle from that in the latter cycle, transforming the n cycle raw data into n-1 cycle data. Then, linear regression is applied to the natural logarithm of the transformed data. Finally, PCR amplification efficiencies and the initial DNA molecular numbers are calculated for each reaction. This taking-difference method avoids the error in subtracting an unknown background, and thus it is more accurate and reliable. This method is easy to perform, and this strategy can be extended to all current methods for PCR data analysis.
定量实时聚合酶链反应(qPCR)是一种灵敏的基因定量方法,已在生物学和生物医学领域广泛应用。目前用于PCR数据分析的方法,包括阈值循环法以及线性和非线性模型拟合方法,都需要减去背景荧光。然而,背景荧光的去除很难做到准确,因此可能会扭曲结果。我们提出一种新方法——差值线性回归法,以克服这一局限性。简而言之,对于每两个连续的PCR循环,我们用后一个循环的荧光减去前一个循环的荧光,将n个循环的原始数据转换为n - 1个循环的数据。然后,对转换后数据的自然对数进行线性回归。最后,计算每个反应的PCR扩增效率和初始DNA分子数。这种差值法避免了减去未知背景时的误差,因此更准确可靠。该方法易于操作,并且这种策略可以扩展到所有当前的PCR数据分析方法。