Suppr超能文献

利用相关网络、图形高斯模型和贝叶斯网络对基因调控网络进行逆向工程的比较评估。

Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks.

作者信息

Werhli Adriano V, Grzegorczyk Marco, Husmeier Dirk

机构信息

Biomathematics and Statistics Scotland, Edinburgh, UK.

出版信息

Bioinformatics. 2006 Oct 15;22(20):2523-31. doi: 10.1093/bioinformatics/btl391. Epub 2006 Jul 14.

Abstract

MOTIVATION

An important problem in systems biology is the inference of biochemical pathways and regulatory networks from postgenomic data. Various reverse engineering methods have been proposed in the literature, and it is important to understand their relative merits and shortcomings. In the present paper, we compare the accuracy of reconstructing gene regulatory networks with three different modelling and inference paradigms: (1) Relevance networks (RNs): pairwise association scores independent of the remaining network; (2) graphical Gaussian models (GGMs): undirected graphical models with constraint-based inference, and (3) Bayesian networks (BNs): directed graphical models with score-based inference. The evaluation is carried out on the Raf pathway, a cellular signalling network describing the interaction of 11 phosphorylated proteins and phospholipids in human immune system cells. We use both laboratory data from cytometry experiments as well as data simulated from the gold-standard network. We also compare passive observations with active interventions.

RESULTS

On Gaussian observational data, BNs and GGMs were found to outperform RNs. The difference in performance was not significant for the non-linear simulated data and the cytoflow data, though. Also, we did not observe a significant difference between BNs and GGMs on observational data in general. However, for interventional data, BNs outperform GGMs and RNs, especially when taking the edge directions rather than just the skeletons of the graphs into account. This suggests that the higher computational costs of inference with BNs over GGMs and RNs are not justified when using only passive observations, but that active interventions in the form of gene knockouts and over-expressions are required to exploit the full potential of BNs.

AVAILABILITY

Data, software and supplementary material are available from http://www.bioss.sari.ac.uk/staff/adriano/research.html

摘要

动机

系统生物学中的一个重要问题是从后基因组数据推断生化途径和调控网络。文献中已经提出了各种逆向工程方法,了解它们的相对优缺点很重要。在本文中,我们用三种不同的建模和推理范式比较重建基因调控网络的准确性:(1)关联网络(RNs):独立于其余网络的成对关联分数;(2)图形高斯模型(GGMs):基于约束推理的无向图形模型,以及(3)贝叶斯网络(BNs):基于分数推理的有向图形模型。评估是在Raf途径上进行的,Raf途径是一个描述人类免疫系统细胞中11种磷酸化蛋白和磷脂相互作用的细胞信号网络。我们使用来自细胞计数实验的实验室数据以及从金标准网络模拟的数据。我们还比较了被动观察和主动干预。

结果

在高斯观测数据上,发现贝叶斯网络和图形高斯模型的表现优于关联网络。不过,对于非线性模拟数据和细胞流式数据,性能差异并不显著。此外,总体而言,我们在观测数据上未观察到贝叶斯网络和图形高斯模型之间存在显著差异。然而,对于干预数据,贝叶斯网络的表现优于图形高斯模型和关联网络,特别是在考虑边的方向而不仅仅是图的骨架时。这表明,仅使用被动观察时,贝叶斯网络比图形高斯模型和关联网络更高的推理计算成本是不合理的,但需要以基因敲除和过表达形式的主动干预来充分发挥贝叶斯网络的潜力。

可用性

数据、软件和补充材料可从http://www.bioss.sari.ac.uk/staff/adriano/research.html获取

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验