Suppr超能文献

一种基于先验信息和表达数据阐明调控网络的框架。

A framework for elucidating regulatory networks based on prior information and expression data.

作者信息

Gevaert Olivier, Van Vooren Steven, De Moor Bart

机构信息

Katholieke Universiteit Leuven, Department of Electrical Engineering (ESAT), Kasteelpark Arenberg 10, 3001 Leuven, Belgium.

出版信息

Ann N Y Acad Sci. 2007 Dec;1115:240-8. doi: 10.1196/annals.1407.002. Epub 2007 Oct 9.

Abstract

Elucidating regulatory networks is an intensively studied topic in bioinformatics. Integration of different sources of information could facilitate this task. We propose to incorporate these information sources in the structure prior of a Bayesian network. We are currently investigating two complementary sources of information: PubMed abstracts combined with publicly available taxonomies or ontologies, and known protein-DNA interactions. These priors, either separately or combined, have the potential of reducing the complexity of reverse-engineering regulatory networks while creating more robust and reliable models. Moreover this approach can easily be extended with other data sources. In such a way Bayesian networks provide a powerful framework for data integration and regulatory network modeling.

摘要

阐明调控网络是生物信息学中一个深入研究的课题。整合不同的信息来源可以促进这项任务。我们建议将这些信息来源纳入贝叶斯网络的结构先验中。我们目前正在研究两种互补的信息来源:结合公开可用分类法或本体的PubMed摘要,以及已知的蛋白质 - DNA相互作用。这些先验信息,单独或组合使用,都有可能降低逆向工程调控网络的复杂性,同时创建更强大、更可靠的模型。此外,这种方法可以很容易地用其他数据源进行扩展。通过这种方式,贝叶斯网络为数据整合和调控网络建模提供了一个强大的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验