Singh Amit, Mai Deborah, Kumar Ashwani, Steyn Adrie J C
Department of Microbiology, University of Alabama, Birmingham, AL 35294, USA.
Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11346-51. doi: 10.1073/pnas.0602817103. Epub 2006 Jul 14.
The sudden increase in information derived from the completed Mycobacterium tuberculosis (Mtb) genome sequences has revealed the need for approaches capable of converting raw genome sequence data into functional information. To date, an experimental system for studying protein-protein association in mycobacteria is not available. We have developed a simple system, termed mycobacterial protein fragment complementation (M-PFC), that is based upon the functional reconstitution of two small murine dihydrofolate reductase domains independently fused to two interacting proteins. Using M-PFC, we have successfully demonstrated dimerization of yeast GCN4, interaction between Mtb KdpD and KdpE, and association between Esat-6 and Cfp-10. We established the association between the sensor kinase, DevS, and response regulator, DevR, thereby demonstrating the potential of M-PFC to study protein associations in the mycobacterial membrane. To validate our system, we screened an Mtb library for proteins that associate with the secreted antigen Cfp-10 and consistently identified Esat-6 in our screens. Additional proteins that specifically associate with Cfp-10 include Rv0686 and Rv2151c (FtsQ), a component and substrate, respectively, of the evolutionary conserved signal recognition pathway; and Rv3596c (ClpC1), an AAA-ATPase chaperone involved in protein translocation and quality control. Our results provide empirical evidence that directly links the Mtb specialized secretion pathway with the evolutionary conserved signal recognition and SecA/SecYEG pathways, suggesting they share secretory components. We anticipate that M-PFC will be a major contributor to the systematic assembly of mycobacterial protein interaction maps that will lead to the development of better strategies for the control of tuberculosis.
来自已完成的结核分枝杆菌(Mtb)基因组序列的信息突然增加,这表明需要能够将原始基因组序列数据转化为功能信息的方法。到目前为止,还没有用于研究分枝杆菌中蛋白质-蛋白质相互作用的实验系统。我们开发了一种简单的系统,称为分枝杆菌蛋白质片段互补(M-PFC),该系统基于两个独立融合到两个相互作用蛋白质上的小鼠二氢叶酸还原酶小结构域的功能重建。使用M-PFC,我们成功地证明了酵母GCN4的二聚化、Mtb KdpD和KdpE之间的相互作用以及Esat-6和Cfp-10之间的关联。我们确定了传感激酶DevS和反应调节因子DevR之间的关联,从而证明了M-PFC在研究分枝杆菌膜中蛋白质相互作用的潜力。为了验证我们的系统,我们筛选了一个Mtb文库,寻找与分泌抗原Cfp-10相互作用的蛋白质,并在我们的筛选中始终鉴定出Esat-6。与Cfp-10特异性相互作用的其他蛋白质包括Rv0686和Rv2151c(FtsQ),分别是进化保守信号识别途径的一个组分和底物;以及Rv3596c(ClpC1),一种参与蛋白质转运和质量控制的AAA-ATP酶伴侣蛋白。我们的结果提供了直接将Mtb特殊分泌途径与进化保守信号识别途径以及SecA/SecYEG途径联系起来的经验证据,表明它们共享分泌组分。我们预计M-PFC将为分枝杆菌蛋白质相互作用图谱的系统组装做出重大贡献,这将导致开发更好的结核病控制策略。