Chen Chih-Chieh, Hwang Jenn-Kang, Yang Jinn-Moon
Institute of Bioinformatics, National Chiao Tung University, Hsinchu, 30050, Taiwan.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W152-7. doi: 10.1093/nar/gkl187.
Protein structure prediction provides valuable insights into function, and comparative modeling is one of the most reliable methods to predict 3D structures directly from amino acid sequences. However, critical problems arise during the selection of the correct templates and the alignment of query sequences therewith. We have developed an automatic protein structure prediction server, (PS)2, which uses an effective consensus strategy both in template selection, which combines PSI-BLAST and IMPALA, and target-template alignment integrating PSI-BLAST, IMPALA and T-Coffee. (PS)2 was evaluated for 47 comparative modeling targets in CASP6 (Critical Assessment of Techniques for Protein Structure Prediction). For the benchmark dataset, the predictive performance of (PS)2, based on the mean GTD_TS score, was superior to 10 other automatic servers. Our method is based solely on the consensus sequence and thus is considerably faster than other methods that rely on the additional structural consensus of templates. Our results show that (PS)2, coupled with suitable consensus strategies and a new similarity score, can significantly improve structure prediction. Our approach should be useful in structure prediction and modeling. The (PS)2 is available through the website at http://ps2.life.nctu.edu.tw/.
蛋白质结构预测为了解蛋白质功能提供了有价值的见解,而比较建模是直接从氨基酸序列预测三维结构最可靠的方法之一。然而,在选择正确的模板以及将查询序列与之比对的过程中会出现关键问题。我们开发了一个自动蛋白质结构预测服务器(PS)2,它在模板选择(结合了PSI-BLAST和IMPALA)以及目标-模板比对(整合了PSI-BLAST、IMPALA和T-Coffee)中都采用了有效的共识策略。在蛋白质结构预测技术关键评估(CASP6)中,对47个比较建模目标对(PS)2进行了评估。对于基准数据集,基于平均GTD_TS分数,(PS)2的预测性能优于其他10个自动服务器。我们的方法仅基于共有序列,因此比其他依赖模板额外结构共识的方法要快得多。我们的结果表明,(PS)2结合合适的共识策略和新的相似性分数,可以显著提高结构预测能力。我们的方法在结构预测和建模中应该会很有用。可通过网站http://ps2.life.nctu.edu.tw/获取(PS)2。