Suppr超能文献

Contribution of NMDA receptors to postsynaptic potentials and paired-pulse facilitation in identified neurons of the rat nucleus accumbens in vitro.

作者信息

Pennartz C M, Boeijinga P H, Kitai S T, Lopes da Silva F H

机构信息

Department of Experimental Zoology, University of Amsterdam, The Netherlands.

出版信息

Exp Brain Res. 1991;86(1):190-8. doi: 10.1007/BF00231053.

Abstract

The principal aim of this study was to characterize the transmitter mechanisms mediating fast postsynaptic potentials in identified neurons of the rat nucleus accumbens. Using the biocytin-avidin labeling technique, impaled neurons were identified as medium spiny neurons. The basic membrane characteristics of these neurons were determined. Local electrical stimulation or stimulation of the corpus callosum elicited a depolarizing postsynaptic potential consisting of an EPSP often followed by an IPSP. The quisqualate/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (4 microM) abolished most of the depolarizing postsynaptic potential. The N-methyl-D-aspartate receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid depressed a small part of the decay phase of the depolarizing postsynaptic potential. Paired-pulse facilitation of postsynaptic potentials was found using interstimulus-intervals between 10 and 150 ms. N-methyl-D-aspartate receptors were found to contribute only slightly to the facilitation of the decay phase of the depolarizing postsynaptic potential, but not to its rising phase. This contribution was particularly clear under conditions of reduced GABAA receptor mediated inhibition. The present study indicates that postsynaptic responses of medium spiny neurons in the nucleus accumbens to local stimulation or stimulation of neocortical afferents are primarily mediated by quisqualate/kainate receptors. The contribution of NMDA receptors is normally limited to a portion of the decay phase of these responses, but is enlarged in the absence of GABAergic inhibition and following paired-pulse stimulation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验