Sawant R M, Hurley J P, Salmaso S, Kale A, Tolcheva E, Levchenko T S, Torchilin V P
Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, USA.
Bioconjug Chem. 2006 Jul-Aug;17(4):943-9. doi: 10.1021/bc060080h.
To develop targeted pharmaceutical carriers additionally capable of responding to certain local stimuli, such as decreased pH values in tumors or infarcts, targeted long-circulating PEGylated liposomes and PEG-phosphatidylethanolamine (PEG-PE)-based micelles have been prepared with several functions. First, they are capable of targeting a specific cell or organ by attaching the monoclonal antimyosin antibody 2G4 to their surface via pNP-PEG-PE moieties. Second, these liposomes and micelles were additionally modified with biotin or TAT peptide (TATp) moieties attached to the surface of the nanocarrier by using biotin-PE or TATp-PE or TATp-short PEG-PE derivatives. PEG-PE used for liposome surface modification or for micelle preparation was made degradable by inserting the pH-sensitive hydrazone bond between PEG and PE (PEG-Hz-PE). Under normal pH values, biotin and TATp functions on the surface of nanocarriers were "shielded" by long protecting PEG chains (pH-degradable PEG(2000)-PE or PEG(5000)-PE) or by even longer pNP-PEG-PE moieties used to attach antibodies to the nanocarrier (non-pH-degradable PEG(3400)-PE or PEG(5000)-PE). At pH 7.4-8.0, both liposomes and micelles demonstrated high specific binding with 2G4 antibody substrate, myosin, but very limited binding on an avidin column (biotin-containing nanocarriers) or internalization by NIH/3T3 or U-87 cells (TATp-containing nanocarriers). However, upon brief incubation (15-30 min) at lower pH values (pH 5.0-6.0), nanocarriers lost their protective PEG shell because of acidic hydrolysis of PEG-Hz-PE and acquired the ability to become strongly retained on an avidin column (biotin-containing nanocarriers) or effectively internalized by cells via TATp moieties (TATp-containing nanocarriers). We consider this result as the first step in the development of multifunctional stimuli-sensitive pharmaceutical nanocarriers.
为了开发能够额外响应某些局部刺激(如肿瘤或梗死区域pH值降低)的靶向药物载体,已经制备了具有多种功能的靶向长循环聚乙二醇化脂质体和基于聚乙二醇 - 磷脂酰乙醇胺(PEG - PE)的胶束。首先,它们能够通过对硝基苯 - 聚乙二醇 - 磷脂酰乙醇胺(pNP - PEG - PE)部分将单克隆抗肌球蛋白抗体2G4连接到其表面,从而靶向特定的细胞或器官。其次,通过使用生物素 - 磷脂酰乙醇胺(biotin - PE)、穿膜肽(TAT)肽(TATp)或TATp - 短聚乙二醇 - 磷脂酰乙醇胺衍生物,将生物素或TAT肽(TATp)部分连接到纳米载体表面,对这些脂质体和胶束进行额外修饰。用于脂质体表面修饰或胶束制备的PEG - PE通过在PEG和PE之间插入pH敏感的腙键(PEG - Hz - PE)而变得可降解。在正常pH值下,纳米载体表面的生物素和TATp功能被长的保护性聚乙二醇链(pH可降解的PEG(2000) - PE或PEG(5000) - PE)或用于将抗体连接到纳米载体的更长的pNP - PEG - PE部分(非pH可降解的PEG(3400) - PE或PEG(5000) - PE)“屏蔽”。在pH 7.4 - 8.0时,脂质体和胶束与2G4抗体底物肌球蛋白均表现出高特异性结合,但在抗生物素蛋白柱上(含生物素的纳米载体)的结合非常有限,或在NIH/3T3或U - 87细胞中的内化作用(含TATp的纳米载体)非常有限。然而,在较低pH值(pH 5.0 - 6.0)下短暂孵育(15 - 30分钟)后,由于PEG - Hz - PE的酸水解,纳米载体失去了其保护性聚乙二醇外壳,并获得了在抗生物素蛋白柱上强烈保留的能力(含生物素的纳米载体)或通过TATp部分被细胞有效内化的能力(含TATp的纳米载体)。我们认为这一结果是多功能刺激敏感药物纳米载体开发的第一步。