Suppr超能文献

由于神经系统中的长距离投射,组件放置不理想,但处理路径较短。

Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems.

作者信息

Kaiser Marcus, Hilgetag Claus C

机构信息

School of Computing Science, University of Newcastle, Newcastle upon Tyne, United Kingdom.

出版信息

PLoS Comput Biol. 2006 Jul 21;2(7):e95. doi: 10.1371/journal.pcbi.0020095. Epub 2006 Jun 8.

Abstract

It has been suggested that neural systems across several scales of organization show optimal component placement, in which any spatial rearrangement of the components would lead to an increase of total wiring. Using extensive connectivity datasets for diverse neural networks combined with spatial coordinates for network nodes, we applied an optimization algorithm to the network layouts, in order to search for wire-saving component rearrangements. We found that optimized component rearrangements could substantially reduce total wiring length in all tested neural networks. Specifically, total wiring among 95 primate (Macaque) cortical areas could be decreased by 32%, and wiring of neuronal networks in the nematode Caenorhabditis elegans could be reduced by 48% on the global level, and by 49% for neurons within frontal ganglia. Wiring length reductions were possible due to the existence of long-distance projections in neural networks. We explored the role of these projections by comparing the original networks with minimally rewired networks of the same size, which possessed only the shortest possible connections. In the minimally rewired networks, the number of processing steps along the shortest paths between components was significantly increased compared to the original networks. Additional benchmark comparisons also indicated that neural networks are more similar to network layouts that minimize the length of processing paths, rather than wiring length. These findings suggest that neural systems are not exclusively optimized for minimal global wiring, but for a variety of factors including the minimization of processing steps.

摘要

有人提出,跨多个组织尺度的神经系统显示出最佳的组件布局,其中组件的任何空间重新排列都会导致总布线增加。利用各种神经网络的广泛连接数据集以及网络节点的空间坐标,我们对网络布局应用了一种优化算法,以寻找节省布线的组件重新排列方式。我们发现,优化后的组件重新排列可以大幅减少所有测试神经网络中的总布线长度。具体而言,95个灵长类(猕猴)皮质区域之间的总布线可以减少32%,线虫秀丽隐杆线虫神经元网络的布线在整体水平上可以减少48%,额叶神经节内的神经元布线可以减少49%。布线长度的减少是由于神经网络中存在长距离投射。我们通过将原始网络与相同大小的最小重布线网络进行比较,探索了这些投射的作用,最小重布线网络只拥有尽可能短的连接。在最小重布线网络中,与原始网络相比,组件之间最短路径上的处理步骤数量显著增加。额外的基准比较还表明,神经网络与使处理路径长度最小化而非布线长度最小化的网络布局更相似。这些发现表明,神经系统并非仅针对最小化全局布线进行优化,而是针对包括最小化处理步骤在内的多种因素进行优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验