Suppr超能文献

水生动物吸力性能和口腔内压力的流体动力学建模:比较研究的局限性

Hydrodynamic modelling of aquatic suction performance and intra-oral pressures: limitations for comparative studies.

作者信息

Van Wassenbergh Sam, Aerts Peter, Herrel Anthony

机构信息

Department of Biology, University of Antwerp (U.A.), Universiteitsplein 1, 2610 Antwerpen, Belgium.

出版信息

J R Soc Interface. 2006 Aug 22;3(9):507-14. doi: 10.1098/rsif.2005.0110.

Abstract

The magnitude of sub-ambient pressure inside the bucco-pharyngeal cavity of aquatic animals is generally considered a valuable metric of suction feeding performance. However, these pressures do not provide a direct indication of the effect of the suction act on the movement of the prey item. Especially when comparing suction performance of animals with differences in the shape of the expanding bucco-pharyngeal cavity, the link between speed of expansion, water velocity, force exerted on the prey and intra-oral pressure remains obscure. By using mathematical models of the heads of catfishes, a morphologically diverse group of aquatic suction feeders, these relationships were tested. The kinematics of these models were fine-tuned to transport a given prey towards the mouth in the same way. Next, the calculated pressures inside these models were compared. The results show that no simple relationship exists between the amount of generated sub-ambient pressure and the force exerted on the prey during suction feeding, unless animals of the same species are compared. Therefore, for evaluating suction performance in aquatic animals in future studies, the focus should be on the flow velocities in front of the mouth, for which a direct relationship exists with the hydrodynamic force exerted on prey.

摘要

水生动物口腔 - 咽腔内低于环境压力的大小通常被认为是衡量吸力摄食性能的一个重要指标。然而,这些压力并不能直接表明吸力行为对猎物移动的影响。特别是在比较具有不同扩张形状的口腔 - 咽腔的动物的吸力性能时,扩张速度、水流速度、施加在猎物上的力和口腔内压力之间的联系仍然不清楚。通过使用鲶鱼头的数学模型(鲶鱼是形态多样的水生吸力摄食者群体),对这些关系进行了测试。对这些模型的运动学进行了微调,以便以相同的方式将给定的猎物向口部运输。接下来,比较了这些模型内部计算出的压力。结果表明,除非比较同一物种的动物,否则在吸力摄食过程中产生的低于环境压力的量与施加在猎物上的力之间不存在简单的关系。因此,在未来的研究中,为了评估水生动物的吸力性能,重点应该放在口前的流速上,因为流速与施加在猎物上的水动力存在直接关系。

相似文献

2
No trade-off between biting and suction feeding performance in clariid catfishes.
J Exp Biol. 2007 Jan;210(Pt 1):27-36. doi: 10.1242/jeb.02619.
3
Scaling of suction feeding performance in the catfish Clarias gariepinus.
Physiol Biochem Zool. 2006 Jan-Feb;79(1):43-56. doi: 10.1086/498188. Epub 2005 Nov 11.
4
Integrating the determinants of suction feeding performance in centrarchid fishes.
J Exp Biol. 2008 Oct;211(Pt 20):3296-305. doi: 10.1242/jeb.020909.
5
The forces exerted by aquatic suction feeders on their prey.
J R Soc Interface. 2007 Jun 22;4(14):553-60. doi: 10.1098/rsif.2006.0197.
6
Use of computational fluid dynamics to study forces exerted on prey by aquatic suction feeders.
J R Soc Interface. 2010 Mar 6;7(44):475-84. doi: 10.1098/rsif.2009.0218. Epub 2009 Aug 12.
7
Linking cranial kinematics, buccal pressure, and suction feeding performance in largemouth bass.
Physiol Biochem Zool. 2002 Nov-Dec;75(6):532-43. doi: 10.1086/344495.
8
Suction feeding across fish life stages: flow dynamics from larvae to adults and implications for prey capture.
J Exp Biol. 2014 Oct 15;217(Pt 20):3748-57. doi: 10.1242/jeb.104331. Epub 2014 Sep 4.
9
Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes.
Integr Comp Biol. 2015 Jul;55(1):21-35. doi: 10.1093/icb/icv032. Epub 2015 May 16.
10
Odontocete suction feeding: Experimental analysis of water flow and head shape.
J Morphol. 2006 Dec;267(12):1415-28. doi: 10.1002/jmor.10486.

引用本文的文献

1
Emerging biological insights enabled by high-resolution 3D motion data: promises, perspectives and pitfalls.
J Exp Biol. 2023 Apr 25;226(Suppl_1). doi: 10.1242/jeb.245138. Epub 2023 Feb 8.
4
Multiple Degrees of Freedom in the Fish Skull and Their Relation to Hydraulic Transport of Prey in Channel Catfish.
Integr Org Biol. 2020 Nov 10;2(1):obaa031. doi: 10.1093/iob/obaa031. eCollection 2020.
5
Fishes can use axial muscles as anchors or motors for powerful suction feeding.
J Exp Biol. 2020 Sep 18;223(Pt 18):jeb225649. doi: 10.1242/jeb.225649.
6
Channel catfish use higher coordination to capture prey than to swallow.
Proc Biol Sci. 2019 Apr 24;286(1901):20190507. doi: 10.1098/rspb.2019.0507.
8
Swimming muscles power suction feeding in largemouth bass.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8690-5. doi: 10.1073/pnas.1508055112. Epub 2015 Jun 22.
10
Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes.
Proc Biol Sci. 2012 Apr 7;279(1732):1287-92. doi: 10.1098/rspb.2011.1838. Epub 2011 Oct 12.

本文引用的文献

2
Scaling of suction feeding performance in the catfish Clarias gariepinus.
Physiol Biochem Zool. 2006 Jan-Feb;79(1):43-56. doi: 10.1086/498188. Epub 2005 Nov 11.
3
Quantification of flow during suction feeding in bluegill sunfish.
Zoology (Jena). 2003;106(2):159-68. doi: 10.1078/0944-2006-00110.
6
Scaling of suction-feeding kinematics and dynamics in the African catfish, Clarias gariepinus.
J Exp Biol. 2005 Jun;208(Pt 11):2103-14. doi: 10.1242/jeb.01603.
7
Morphology predicts suction feeding performance in centrarchid fishes.
J Exp Biol. 2004 Oct;207(Pt 22):3873-81. doi: 10.1242/jeb.01227.
8
Linking cranial kinematics, buccal pressure, and suction feeding performance in largemouth bass.
Physiol Biochem Zool. 2002 Nov-Dec;75(6):532-43. doi: 10.1086/344495.
10
Aquatic prey capture in ray-finned fishes: a century of progress and new directions.
J Morphol. 2001 May;248(2):99-119. doi: 10.1002/jmor.1023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验