Lubchenko Vassiliy, Wolynes Peter G, Frauenfelder Hans
Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0371, USA.
J Phys Chem B. 2005 Apr 21;109(15):7488-99. doi: 10.1021/jp045205z.
Using recent advances in the Random First-Order Transition (RFOT) Theory of glass-forming liquids, we explain how the molecular motions of a glass-forming solvent distort the protein's boundary and slave some of the protein's conformational motions. Both the length and time scales of the solvent imposed constraints are provided by the RFOT theory. Comparison of the protein relaxation rate to that of the solvent provides an explicit lower bound on the size of the conformational space explored by the protein relaxation. Experimental measurements of slaving of myoglobin motions indicate that a major fraction of functionally important motions have significant entropic barriers.
利用玻璃形成液体的随机一阶转变(RFOT)理论的最新进展,我们解释了玻璃形成溶剂的分子运动如何扭曲蛋白质的边界并控制蛋白质的一些构象运动。溶剂施加约束的长度和时间尺度均由RFOT理论提供。将蛋白质弛豫速率与溶剂的弛豫速率进行比较,可明确得出蛋白质弛豫所探索的构象空间大小的下限。对肌红蛋白运动的从属关系进行的实验测量表明,大部分功能上重要的运动都具有显著的熵垒。