Suppr超能文献

亚伯拉罕溶质极性参数的静电起源。

The electrostatic origin of Abraham's solute polarity parameter.

作者信息

Arey J Samuel, Green William H, Gschwend Philip M

机构信息

Department of Marine Chemistry and Geochemistry, MS #4, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.

出版信息

J Phys Chem B. 2005 Apr 21;109(15):7564-73. doi: 10.1021/jp044525f.

Abstract

A computational method was developed which relates the empirical linear solvation energy relationship (LSER) solute polarity parameter, S (formerly denoted ), to two more fundamental quantities: a polarizability term and a computed solvent-accessible-surface electrostatic term. Electrostatics computations were conducted explicitly or with dielectric field polarizable continuum models (PCM, SCIPCM, IPCM), employing a density functional theory (B3LYP/6-311G(2df,2p)) or efficient Hartree-Fock (HF/MIDI!) method for 90 polar and nonpolar organic solutes. Electrostatic parameters calculated at electron isodensity solute surfaces were found to produce significantly better correlations with empirical S values than the same electrostatic parameters deduced from a fixed Bondi atomic radii based surface. The best-fit expression was found employing SCIPCM/IPCM at the 0.0004 e(-)/bohr(3) solvent-accessible-surface: S(fit)() = 0.46E - 0.091SigmaV(s)()(2), with squared correlation coefficient = 0.96 and standard deviation = 0.10, where E is a measured solute excess polarizability scale and SigmaV(s)()(2) is a quantum-calculated solute electrostatic descriptor in kcal A/mol. The resulting model is more accurate than previously developed estimation approaches and relies on only two fitted coefficients; it has the potential advantage of applicability to any solute composed of C, H, N, O, S, F, Cl, and Br. Finally, this investigation offers quantitative insight into the relative contributions of solute polarity and solute polarizability to the empirical LSER polarity parameter, S.

摘要

开发了一种计算方法,该方法将经验线性溶剂化能关系(LSER)溶质极性参数S(以前表示为 )与另外两个更基本的量相关联:一个极化率项和一个计算得到的溶剂可及表面静电项。静电计算是明确进行的,或者使用介电场极化连续介质模型(PCM、SCIPCM、IPCM),采用密度泛函理论(B3LYP/6-311G(2df,2p))或高效哈特里-福克(HF/MIDI!)方法对90种极性和非极性有机溶质进行计算。发现在电子等密度溶质表面计算得到的静电参数与经验S值的相关性明显优于从基于固定邦迪原子半径的表面推导得到的相同静电参数。在0.0004 e(-)/bohr(3)溶剂可及表面采用SCIPCM/IPCM找到了最佳拟合表达式:S(fit)() = 0.46E - 0.091SigmaV(s)()(2),相关系数平方 = 0.96,标准偏差 = 0.10,其中E是测量得到的溶质过量极化率标度,SigmaV(s)()(2)是量子计算得到的溶质静电描述符,单位为kcal A/mol。所得模型比以前开发的估计方法更准确,并且仅依赖于两个拟合系数;它具有适用于任何由C、H、N、O、S、F、Cl和Br组成的溶质的潜在优势。最后,这项研究对溶质极性和溶质极化率对经验LSER极性参数S的相对贡献提供了定量见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验