Zhang Zhizhen, Wang Shenghong, Brown Trevor N, Sangion Alessandro, Arnot Jon A, Li Li
School of Public Health, University of Nevada, 1664, N. Virginia Street, Reno, NV 89557-274, United States.
ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada.
Water Res X. 2024 Mar 26;22:100219. doi: 10.1016/j.wroa.2024.100219. eCollection 2024 Jan 1.
Reliable estimation of chemical sorption from water to solid phases is an essential prerequisite for reasonable assessments of chemical hazards and risks. However, current fate and exposure models mostly rely on algorithms that lack the capability to quantify chemical sorption resulting from interactions with multiple soil constituents, including amorphous organic matter, carbonaceous organic matter, and mineral matter. Here, we introduce a novel, generic approach that explicitly combines the gravimetric composition of various solid constituents and poly-parameter linear free energy relationships to calculate the solid-water sorption coefficient () for non-ionizable or predominantly neutral organic chemicals with diverse properties in a neutral environment. Our approach demonstrates an overall statistical uncertainty of approximately 0.9 log units associated with predictions for different types of soil. By applying this approach to estimate the sorption of 70 diverse chemicals from water to two types of soils, we uncover that different chemicals predominantly exhibit sorption onto different soil constituents. Moreover, we provide mechanistic insights into the limitation of relying solely on organic carbon normalized sorption coefficient () in chemical hazard assessment, as the measured can vary significantly across different soil types, and therefore, a universal cut-off threshold may not be appropriate. This research highlights the importance of considering chemical properties and multiple solid constituents in sorption modeling and offers a valuable theoretical approach for improved chemical hazard and exposure assessments.
可靠地估算化学物质从水相到固相的吸附作用,是合理评估化学危害和风险的重要前提。然而,当前的归宿和暴露模型大多依赖于一些算法,这些算法缺乏量化与多种土壤成分(包括无定形有机物、含碳有机物和矿物质)相互作用所导致的化学吸附的能力。在此,我们引入一种新颖的通用方法,该方法明确结合了各种固体成分的重量组成和多参数线性自由能关系,以计算中性环境中具有不同性质的非离子化或主要呈中性的有机化学物质的固 - 水吸附系数()。我们的方法表明,与不同类型土壤的预测相关的总体统计不确定性约为0.9个对数单位。通过应用此方法估算70种不同化学物质从水相到两种土壤类型的吸附情况,我们发现不同的化学物质主要吸附在不同的土壤成分上。此外,我们提供了关于在化学危害评估中仅依赖有机碳归一化吸附系数()的局限性的机理见解,因为实测值在不同土壤类型之间可能有显著差异,因此,一个通用的临界阈值可能并不合适。这项研究突出了在吸附建模中考虑化学性质和多种固体成分的重要性,并为改进化学危害和暴露评估提供了一种有价值的理论方法。