He Yan, Li Hung-Wing, Yeung Edward S
Ames Laboratory, U. S. Department of Energy, Ames, Iowa 50011-3111, USA.
J Phys Chem B. 2005 May 12;109(18):8820-32. doi: 10.1021/jp0447284.
A variable-angle total-internal-reflection fluorescence microscope (VATIRFM) capable of providing a large range of incident angles was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. An algorithm using a public-domain image-processing program, ImageJ, was developed for single-molecule counting. The experimental counts at various incident angles with different evanescent-field layer (EFL) thicknesses are affected by molecular diffusion. The dynamics of molecules near the surface and the observed counts in the VATIRFM are elucidated using a limited one-dimensional random-walk diffusion model. The simulation fits well with the experimental counting results. Further analysis using the simulation reveals the details of single-molecule motion. One implication is that the measured intensities cannot be used directly to determine the distances of molecules from the surface, though the majority of fluorescence does come from the EFL. Another implication is that rather than providing molecular concentrations within EFL the experimental counting results depict the distance-dependent dynamics of molecules near the surface. Thus, the VATIRFM could be a powerful technique to study the surface repulsion/attraction of molecules within a few hundred nanometers of the surface. Further studies show that molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer.
构建了一种能够提供大范围入射角的可变角度全内反射荧光显微镜(VATIRFM),用于对固/液界面处的单个DNA分子动力学进行成像。开发了一种使用公共领域图像处理程序ImageJ的算法用于单分子计数。在具有不同倏逝场层(EFL)厚度的各种入射角下的实验计数受分子扩散影响。使用有限的一维随机游走扩散模型阐明了表面附近分子的动力学以及VATIRFM中观察到的计数。模拟结果与实验计数结果拟合良好。使用模拟进行的进一步分析揭示了单分子运动的细节。一个启示是,尽管大部分荧光确实来自EFL,但测量强度不能直接用于确定分子与表面的距离。另一个启示是,实验计数结果并非提供EFL内的分子浓度,而是描绘了表面附近分子的距离依赖性动力学。因此,VATIRFM可能是研究表面几百纳米内分子的表面排斥/吸引的有力技术。进一步的研究表明,在低离子强度下,分子在比计算出的双电层厚度远得多的距离处就会经历静电排斥。