Salvador P, Hidalgo M Gonzalez, Zaban Arie, Bisquert Juan
Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, 07071 Palma de Mallorca, Spain.
J Phys Chem B. 2005 Aug 25;109(33):15915-26. doi: 10.1021/jp051515l.
The open-circuit voltage (V(oc)) dependence on the illumination intensity (phi0) under steady-state conditions in both bare and coated (blocked) nanostructured TiO2 dye-sensitized solar cells (DSSCs) is analyzed. This analysis is based on a recently reported model [Bisquert, J.; Zaban, A.; Salvador, P. J. Phys. Chem. B 2002, 106, 8774] which describes the rate of interfacial electron transfer from the conduction band of TiO2 to acceptor electrolyte levels (recombination). The model involves two possible mechanisms: (1) direct, isoenergetic electron injection from the conduction band and (2) a two-step process involving inelastic electron trapping by band-gap surface states and subsequent isoenergetic transfer of trapped electrons to electrolyte levels. By considering the variation of V(oc) over a wide range of illumination intensities (10(10) < phi0 < 10(16) cm(-2) s(-1)), three major regions with different values of dV(oc)/d phi0 can be distinguished and interpreted. At the lower illumination intensities, recombination mainly involves localized band-gap, deep traps at about 0.6 eV below the conduction band edge; at intermediate photon fluxes, recombination is apparently controlled by a tail of shallow traps, while, for high enough phi0 values, conduction band states control the recombination process. The high phi0 region is characterized by a slope of dV(oc)/d log phi0 congruent with 60 mV, which indicates a recombination of first order in the free electron concentration. The study, which was extended to different solar cells, shows that the energy of the deep traps seems to be an intrinsic property of the nanostructured TiO2 material, while their concentration and also the density ([symbol: see text]t approximately 10(18)-10(19) cm(-3)) and distribution of shallow traps, which strongly affects the shape of the V(oc) vs phi0 curves, change from sample to sample and are quite sensitive to the electrode preparation. The influence of the back-reaction of electrons from the fluorine-doped tin oxide (FTO) conducting glass substrate with electrolyte tri-iodide ions on the V(oc) vs phi0 dependence characteristic of the DSSC is analyzed. It is concluded that this back-reaction route can be neglected, even at low light intensities, when its rate (exchange current density, j0), which can vary over 4 orders of magnitude depending on the type of FTO used, is low enough (j0 < or = 10(-8)A cm(-2)). The comparison of V(oc) vs phi0 measurements corresponding to different DSSCs with and without blocking of the FTO-electrolyte contact supports this conclusion.
分析了裸露和包覆(阻挡)的纳米结构二氧化钛染料敏化太阳能电池(DSSC)在稳态条件下开路电压(V(oc))对光照强度(phi0)的依赖性。该分析基于最近报道的一个模型[比斯奎尔特,J.;扎班,A.;萨尔瓦多,P.《物理化学杂志B》2002年,106卷,8774页],该模型描述了从二氧化钛导带向受体电解质能级的界面电子转移速率(复合)。该模型涉及两种可能的机制:(1)从导带直接进行等能量电子注入;(2)一个两步过程,包括带隙表面态对电子的非弹性俘获以及随后被俘获电子向电解质能级的等能量转移。通过考虑在很宽的光照强度范围(10(10) < phi0 < 10(16) cm(-2) s(-1))内V(oc)的变化,可以区分和解释具有不同dV(oc)/d phi0值的三个主要区域。在较低光照强度下,复合主要涉及局域化的带隙,即位于导带边缘以下约0.6 eV处的深陷阱;在中等光子通量下,复合显然由浅陷阱的尾部控制,而对于足够高的phi0值,导带态控制复合过程。高phi0区域的特征是dV(oc)/d log phi0的斜率约为60 mV,这表明在自由电子浓度中存在一级复合。该研究扩展到不同的太阳能电池,结果表明深陷阱的能量似乎是纳米结构二氧化钛材料的固有属性,而它们的浓度以及浅陷阱的密度([符号:见原文]t约为10(18)-10(19) cm(-3))和分布,对V(oc)与phi0曲线的形状有很大影响,不同样品之间会发生变化,并且对电极制备非常敏感。分析了来自氟掺杂氧化锡(FTO)导电玻璃基板的电子与电解质三碘离子的反向反应对DSSC的V(oc)与phi0依赖性特征的影响。得出的结论是,当该反向反应路径的速率(交换电流密度,j0)足够低(j0 ≤ 10(-8)A cm(-2))时,即使在低光照强度下也可以忽略不计,j0的值根据所使用的FTO类型可在4个数量级范围内变化。对不同DSSC在有和没有阻挡FTO - 电解质接触情况下的V(oc)与phi0测量结果的比较支持了这一结论。