Matylitsky V V, Lenz M O, Wachtveitl J
Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt/M, Max-von-Laue-Strasse 7, D-60438 Frankfurt/M, Germany.
J Phys Chem B. 2006 Apr 27;110(16):8372-9. doi: 10.1021/jp060588h.
The dependence of the interfacial electron transfer in alizarin-sensitized TiO2 nanoparticles on the sample pH has been examined via transient absorbance spectroscopy in the visible spectral region (443-763 nm). Excitation of the alizarin/TiO2 system with visible pump pulses (lambdaexc = 500 nm) leads to a very fast electron injection (tauinj < 100 fs) over a wide pH range. Back electron transfer shows complicated multiphasic kinetics and strongly depends on the acidity of the solution. The strong dependence of back-electron-transfer dynamics on the ambient pH value is explained by a Nernstian-type change in the semiconductor band energy. Indeed, a variation of pH values over 7 units leads to a approximately 0.42 eV change of the conduction band edge position (i.e., the nominal free energy of the electron in the electrode). Assuming a pH-independent redox potential of the dye, this change was sufficient to push the system to a condition where direct photoinitiated electron injection to intraband gap surface states could be investigated. The existence of an electron-transfer pathway via surface trap states is supported by the similarity of the observed back-electron-transfer kinetics of alizarin/TiO2 at pH 9 and alizarin/ZrO2 reported in earlier work (J. Phys. Chem. B 2000, 104, 8995), where the conduction band edge is approximately 1 eV above the excited state of the dye. The influence of surface trap states on interfacial electron transfer has been studied, and a detailed analysis of their population, depopulation, and relaxation kinetics is performed. Therefore, alizarin adsorbed on the surface of TiO2 nanoparticles is an ideally suited system, where pH-dependent investigations allow a detailed study of the electron dynamics in trap states of TiO2 nanoparticles.
通过可见光谱区域(443 - 763 nm)的瞬态吸收光谱,研究了茜素敏化的TiO₂纳米颗粒中界面电子转移对样品pH值的依赖性。用可见泵浦脉冲(λexc = 500 nm)激发茜素/TiO₂体系,在很宽的pH范围内会导致非常快速的电子注入(τinj < 100 fs)。反向电子转移表现出复杂的多相动力学,并且强烈依赖于溶液的酸度。反向电子转移动力学对环境pH值的强烈依赖性可通过半导体能带能量的能斯特型变化来解释。实际上,pH值变化超过7个单位会导致导带边缘位置发生约0.42 eV的变化(即电极中电子的标称自由能)。假设染料的氧化还原电位与pH无关,这种变化足以将系统推至一种状态,在此状态下可以研究直接光引发的电子注入到带隙内表面态的情况。早期工作(《物理化学杂志B》2000年,104卷,8995页)报道的茜素/TiO₂在pH = 9时的反向电子转移动力学与茜素/ZrO₂的相似性,支持了通过表面陷阱态存在电子转移途径,其中导带边缘比染料的激发态高约1 eV。研究了表面陷阱态对界面电子转移的影响,并对其填充、去填充和弛豫动力学进行了详细分析。因此,吸附在TiO₂纳米颗粒表面的茜素是一个非常合适的体系,基于pH的研究能够详细研究TiO₂纳米颗粒陷阱态中的电子动力学。