Zhao Jianjun, Bradbury Christopher R, Huclova Sonja, Potapova Inga, Carrara Michel, Fermín David J
Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
J Phys Chem B. 2005 Dec 8;109(48):22985-94. doi: 10.1021/jp054127s.
The electrochemical behavior of arrays of Au nanoparticles assembled on Au electrodes modified by 11-mercaptoundecanoic acid (MUA) and poly-L-lysine (PLYS) was investigated as a function of the particle number density. The self-assembled MUA and PLYS layers formed compact ultrathin films with a low density of defects as examined by scanning tunneling microscopy. The electrostatic adsorption of Au particles of 19 +/- 3 nm on the PLYS layer resulted in randomly distributed arrays in which the particle number density is controlled by the adsorption time. In the absence of the nanoparticles, the dynamics of electron transfer involving the hexacynoferrate redox couple is strongly hindered by the self-assembled film. This effect is primarily associated with a decrease in the electron tunneling probability as the redox couple cannot permeate through the MUA monolayer at the electrode surface. Adsorption of the Au nanoparticles dramatically affects the electron-transfer dynamics even at low particle number density. Cyclic voltammetry and impedance spectroscopy were interpreted in terms of classical models developed for partially blocked surfaces. The analysis shows that the electron transfer across a single particle exhibits the same phenomenological rate constant of electron transfer as for a clean Au surface. The apparent unhindered electron exchange between the nanoparticles and the electrode surface is discussed in terms of established models for electron tunneling across metal-insulator-metal junctions.
研究了在由11-巯基十一烷酸(MUA)和聚-L-赖氨酸(PLYS)修饰的金电极上组装的金纳米颗粒阵列的电化学行为,该行为是颗粒数密度的函数。通过扫描隧道显微镜检查发现,自组装的MUA和PLYS层形成了具有低密度缺陷的致密超薄膜。19±3nm的金颗粒在PLYS层上的静电吸附导致形成随机分布的阵列,其中颗粒数密度由吸附时间控制。在没有纳米颗粒的情况下,涉及六氰合铁酸盐氧化还原对的电子转移动力学受到自组装膜的强烈阻碍。这种效应主要与电子隧穿概率的降低有关,因为氧化还原对无法渗透过电极表面的MUA单层。即使在低颗粒数密度下,金纳米颗粒的吸附也会显著影响电子转移动力学。循环伏安法和阻抗谱是根据为部分受阻表面开发的经典模型进行解释的。分析表明,单个颗粒上的电子转移表现出与清洁金表面相同的现象学电子转移速率常数。根据已建立的金属-绝缘体-金属结电子隧穿模型,讨论了纳米颗粒与电极表面之间明显不受阻碍的电子交换。