Xi Guangcheng, Liu Yankuan, Liu Xiaoyan, Wang Xiaoqing, Qian Yitai
Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P.R. China.
J Phys Chem B. 2006 Jul 27;110(29):14172-8. doi: 10.1021/jp0617468.
In this article, a novel magnesium-catalyzed co-reduction route was developed for the large-scale synthesis of aligned beta-SiC one-dimensional (1D) nanostructures at relative lower temperature (600 degrees C). By carefully controlling the reagent concentrations, we could synthesize beta-SiC rodlike and needlelike nanostructures. The possible growth mechanism of the as-synthesized beta-SiC 1D nanostructures has been investigated. The structure and morphology of the as-synthesized beta-SiC nanostructures are characterized using X-ray diffraction, Fourier transform infrared absorption, and scanning and transmission electron microscopes. Raman and photoluminescence properties are also investigated at room temperature. The as-synthesized beta-SiC nanostructures exhibit strong shape-dependent field emission properties. Corresponding to their shapes, the as-synthesized nanorods and nanoneedles display the turn-on fields of 12, 8.4, and 1.8 V/microm, respectively.
在本文中,开发了一种新型镁催化共还原路线,用于在相对较低温度(600摄氏度)下大规模合成取向β-SiC一维(1D)纳米结构。通过仔细控制试剂浓度,我们能够合成β-SiC棒状和针状纳米结构。对合成的β-SiC一维纳米结构的可能生长机制进行了研究。使用X射线衍射、傅里叶变换红外吸收以及扫描和透射电子显微镜对合成的β-SiC纳米结构的结构和形态进行了表征。还在室温下研究了拉曼和光致发光特性。合成的β-SiC纳米结构表现出强烈的形状依赖性场发射特性。与它们的形状相对应,合成的纳米棒和纳米针的开启场分别为12、8.4和1.8 V/μm。