Cheng Qijin, Xu Shuyan, Ostrikov Kostya Ken
CSIRO Materials Science and Engineering, Lindfield, NSW, Australia.
Nanotechnology. 2009 May 27;20(21):215606. doi: 10.1088/0957-4484/20/21/215606. Epub 2009 May 6.
Silicon thin films with a variable content of nanocrystalline phase were deposited on single-crystal silicon and glass substrates by inductively coupled plasma-assisted chemical vapor deposition using a silane precursor without any hydrogen dilution in the low substrate temperature range from 100 to 300 degrees C. The structural and optical properties of the deposited films are systematically investigated by Raman spectroscopy, x-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/vis spectroscopy, scanning electron microscopy and high-resolution transmission electron microscopy. It is shown that the structure of the silicon thin films evolves from the purely amorphous phase to the nanocrystalline phase when the substrate temperature is increased from 100 to 150 degrees C. It is found that the variations of the crystalline fraction f(c), bonded hydrogen content C(H), optical bandgap E(Tauc), film microstructure and growth rate R(d) are closely related to the substrate temperature. In particular, at a substrate temperature of 300 degrees C, the nanocrystalline Si thin films of our interest feature a high growth rate of 1.63 nm s(-1), a low hydrogen content of 4.0 at.%, a high crystalline fraction of 69.1%, a low optical bandgap of 1.55 eV and an almost vertically aligned columnar structure with a mean grain size of approximately 10 nm. It is also shown that the low-temperature synthesis of nanocrystalline Si thin films without any hydrogen dilution is attributed to the outstanding dissociation ability of the high-density inductively coupled plasmas and effective plasma-surface interactions during the growth process. Our results offer a highly effective yet simple and environmentally friendly technique to synthesize high-quality nanocrystalline Si films, vitally needed for the development of new-generation solar cells and other emerging nanotechnologies.
在100至300摄氏度的低衬底温度范围内,使用硅烷前驱体通过电感耦合等离子体辅助化学气相沉积法,在单晶硅和玻璃衬底上沉积了具有可变纳米晶相含量的硅薄膜,且未进行任何氢气稀释。通过拉曼光谱、X射线衍射、傅里叶变换红外吸收光谱、紫外/可见光谱、扫描电子显微镜和高分辨率透射电子显微镜系统地研究了沉积薄膜的结构和光学性质。结果表明,当衬底温度从100摄氏度升高到150摄氏度时,硅薄膜的结构从纯非晶相演变为纳米晶相。发现晶体分数f(c)、键合氢含量C(H)、光学带隙E(Tauc)、薄膜微观结构和生长速率R(d)的变化与衬底温度密切相关。特别是,在300摄氏度的衬底温度下,我们感兴趣的纳米晶硅薄膜具有1.63 nm s(-1)的高生长速率、4.0 at.%的低氢含量、69.1%的高晶体分数、1.55 eV的低光学带隙以及平均晶粒尺寸约为10 nm的几乎垂直排列的柱状结构。还表明,在无任何氢气稀释的情况下低温合成纳米晶硅薄膜归因于高密度电感耦合等离子体的出色离解能力以及生长过程中有效的等离子体-表面相互作用。我们的结果提供了一种高效、简单且环保的技术来合成高质量的纳米晶硅薄膜,这对于新一代太阳能电池和其他新兴纳米技术的发展至关重要。