Suppr超能文献

[抗疟药耐药性]

[Antimalarial drug resistance].

作者信息

Le Bras J, Musset L, Clain J

机构信息

Laboratoire de parasitologie, EA 209, université René-Descartes, CNR paludisme, hôpital Bichat-Claude-Bernard, 75018 Paris, France.

出版信息

Med Mal Infect. 2006 Aug;36(8):401-5. doi: 10.1016/j.medmal.2006.05.005. Epub 2006 Jul 18.

Abstract

Drug resistant malaria is mostly due to Plasmodium falciparum, the highly prevalent species in tropical Africa, Amazon, and Southeast Asia. P. falciparum is responsible for severe involvement of fever or anemia causing more than a million deaths per year. Rationale for treatment is becoming weak as multiple drug resistance against well-tolerated drugs develops. P. falciparum drug resistant malaria originates from chromosomal mutations. Analyses using molecular, genetic and biochemical approaches showed that: 1) impaired uptake of chloroquine by the parasite vacuole is a common characteristic of resistant strains, this phenotype correlates with pfmdr1 and pfcrt gene mutations; 2) one S108N to four (N51I, C59R, I164L) point mutations of dihydrofolate reductase, the enzyme target of antifolinics (pyrimethamine and proguanil), give moderate to high level of resistance to these drugs; 3) resistance to sulfonamides and sulfones involves mutations of dihydropteroate synthase (A437G, K540E), their enzyme target, impairing their capacity to potentiate antifolinic drugs; 4) resistance to atovaquone plus proguanil involves one single mutation on atovaquone target, cytochrome b (Y268S, C or N); 5) resistance to mefloquine is thought to be linked to the over expression of pfmdr1, a pump expelling toxic waste from eukaryotic cells. P. falciparum resistance levels may differ according to places and time, depending on malaria transmission and drug pressure. Coupling in vivo to in vitro tests, and using molecular tests is essential for the surveillance of replacement drugs. Low cost biochemical tools are urgently needed for a prospective monitoring of resistance.

摘要

耐药性疟疾主要由恶性疟原虫引起,这种疟原虫在热带非洲、亚马逊地区和东南亚高度流行。恶性疟原虫会导致严重的发热或贫血,每年造成超过100万人死亡。随着对耐受性良好的药物产生多重耐药性,治疗的理论依据正变得薄弱。恶性疟原虫耐药性疟疾源于染色体突变。使用分子、遗传和生化方法的分析表明:1)寄生虫液泡对氯喹的摄取受损是耐药菌株的一个共同特征,这种表型与pfmdr1和pfcrt基因突变相关;2)二氢叶酸还原酶(抗叶酸药物(乙胺嘧啶和氯胍)的酶靶点)的一个S108N到四个(N51I、C59R、I164L)点突变会对这些药物产生中度至高度耐药性;3)对磺胺类药物和砜类药物的耐药性涉及二氢蝶酸合酶(A437G、K540E)的突变,二氢蝶酸合酶是它们的酶靶点,会损害它们增强抗叶酸药物的能力;4)对阿托伐醌加氯胍的耐药性涉及阿托伐醌靶点细胞色素b上的一个单一突变(Y268S、C或N);5)对甲氟喹的耐药性被认为与pfmdr1的过度表达有关,pfmdr1是一种从真核细胞中排出有毒废物的泵。恶性疟原虫的耐药水平可能因地点和时间而异,这取决于疟疾传播和药物压力。将体内试验与体外试验相结合,并使用分子检测对于替代药物的监测至关重要。前瞻性监测耐药性迫切需要低成本的生化工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验