Risner Jessica R, Holt Jeffrey R
Department of Neuroscience, University of Virginia, MR4, Room 5126, Box 801392, Charlottesville, VA 22908-1392, USA.
J Neurophysiol. 2006 Nov;96(5):2364-76. doi: 10.1152/jn.00523.2006. Epub 2006 Jul 19.
How mechanical information is encoded in the vestibular periphery has not been clarified. To begin to address the issue we examined the intrinsic firing properties of postnatal mouse vestibular ganglion neurons using the whole cell, tight-seal technique in current-clamp mode. We categorized two populations of neurons based on the threshold required to evoke an action potential. Low-threshold neurons fired with an average minimum current injection of -43 pA, whereas high-threshold neurons required -176 pA. Using sine-wave stimuli, we found that the neurons were inherently tuned with best frequencies that ranged up to 40 Hz. To investigate the membrane properties that contributed to the variability in firing properties we examined the same neurons in voltage-clamp mode. High-threshold neurons had larger cell bodies and whole cell capacitances but a resting conductance density of 0.18 nS/pF, nearly identical to that of low-threshold neurons, suggesting that cell size was an important parameter determining threshold. We also found that vestibular ganglion neurons expressed a heterogeneous population of potassium conductances. TEA-sensitive conductances contributed to the position of the tuning curve in the frequency domain. A 4-AP-sensitive conductance was active at rest and hyperpolarized resting potential, limited spontaneous activity, raised threshold, and prevented repetitive firing. In response to sine-wave stimulation 4-AP-sensitive conductances prevented action potential generation at low frequencies and thus contributed to the high-pass corner of the tuning curve. The mean low-pass corner (about 29 Hz) was determined by the membrane time constant. Together these factors contributed to the sharply tuned, band-pass characteristics intrinsic to postnatal vestibular ganglion neurons.
机械信息在前庭外周是如何编码的尚未明确。为了开始解决这个问题,我们使用全细胞、紧密封技术,在电流钳模式下研究了出生后小鼠前庭神经节神经元的内在放电特性。我们根据诱发动作电位所需的阈值对两类神经元进行了分类。低阈值神经元在平均最小电流注入为 -43 pA 时放电,而高阈值神经元需要 -176 pA。使用正弦波刺激,我们发现这些神经元具有固有调谐特性,最佳频率范围高达40 Hz。为了研究导致放电特性变化的膜特性,我们在电压钳模式下对相同的神经元进行了检查。高阈值神经元具有更大的细胞体和全细胞电容,但静息电导密度为0.18 nS/pF,与低阈值神经元几乎相同,这表明细胞大小是决定阈值的一个重要参数。我们还发现前庭神经节神经元表达了多种钾电导。对四乙铵(TEA)敏感的电导有助于调谐曲线在频域中的位置。一种对4-氨基吡啶(4-AP)敏感的电导在静息时活跃,使静息电位超极化,限制自发活动,提高阈值,并阻止重复放电。在正弦波刺激下,对4-AP敏感的电导在低频时阻止动作电位的产生,从而有助于调谐曲线的高通转折。平均低通转折(约29 Hz)由膜时间常数决定。这些因素共同促成了出生后前庭神经节神经元固有的尖锐调谐、带通特性。