Beraneck Mathieu, Pfanzelt Sandra, Vassias Isabelle, Rohregger Martin, Vibert Nicolas, Vidal Pierre-Paul, Moore Lee E, Straka Hans
Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7060, Université Paris Descartes, 75270 Paris cedex 06, France.
J Neurosci. 2007 Apr 18;27(16):4283-96. doi: 10.1523/JNEUROSCI.5232-06.2007.
Central vestibular neurons process head movement-related sensory signals over a wide dynamic range. In the isolated frog whole brain, second-order vestibular neurons were identified by monosynaptic responses after electrical stimulation of individual semicircular canal nerve branches. Neurons were classified as tonic or phasic vestibular neurons based on their different discharge patterns in response to positive current steps. With increasing frequency of sinusoidally modulated current injections, up to 100 Hz, there was a concomitant decrease in the impedance of tonic vestibular neurons. Subthreshold responses as well as spike discharge showed classical low-pass filter-like characteristics with corner frequencies ranging from 5 to 20 Hz. In contrast, the impedance of phasic vestibular neurons was relatively constant over a wider range of frequencies or showed a resonance at approximately 40 Hz. Above spike threshold, single spikes of phasic neurons were synchronized with the sinusoidal stimulation between approximately 20 and 50 Hz, thus showing characteristic bandpass filter-like properties. Both the subthreshold resonance and bandpass filter-like discharge pattern depend on the activation of an I(D) potassium conductance. External current or synaptic stimulation that produced impedance increases (i.e., depolarization in tonic or hyperpolarization in phasic neurons) had opposite and complementary effects on the responses of the two types of neurons. Thus, membrane depolarization by current steps or repetitive synaptic excitation amplified synaptic inputs in tonic vestibular neurons and reduced them in phasic neurons. These differential, opposite membrane response properties render the two neuronal types particularly suitable for either integration (tonic neurons) or signal detection (phasic neurons), respectively, and dampens variations of the resting membrane potential in the latter.
中枢前庭神经元在很宽的动态范围内处理与头部运动相关的感觉信号。在离体的青蛙全脑中,通过电刺激单个半规管神经分支后的单突触反应来识别二阶前庭神经元。根据神经元对正向电流阶跃的不同放电模式,将其分为紧张性或相位性前庭神经元。随着正弦调制电流注入频率增加至100Hz,紧张性前庭神经元的阻抗随之降低。阈下反应以及动作电位发放呈现出典型的低通滤波器样特征,转折频率范围为5至20Hz。相比之下,相位性前庭神经元的阻抗在更宽的频率范围内相对恒定,或在约40Hz处出现共振。在动作电位阈值以上,相位性神经元的单个动作电位在约20至50Hz之间与正弦刺激同步,从而呈现出特征性的带通滤波器样特性。阈下共振和带通滤波器样放电模式均依赖于I(D)钾电导的激活。产生阻抗增加的外部电流或突触刺激(即紧张性神经元中的去极化或相位性神经元中的超极化)对两种类型神经元的反应具有相反且互补的作用。因此,通过电流阶跃或重复性突触兴奋引起的膜去极化会增强紧张性前庭神经元中的突触输入,而在相位性神经元中则会减弱突触输入。这些不同的、相反的膜反应特性使得这两种神经元类型分别特别适合于整合(紧张性神经元)或信号检测(相位性神经元),并抑制了后者静息膜电位的变化。