Suppr超能文献

基于多变量概率的药物性肝损伤信号检测

Multivariate probability-based detection of drug-induced hepatic signals.

作者信息

Trost Donald C

机构信息

Mathematical Medicine, Pfizer Global Research and Development, Groton, Connecticut 06340, USA.

出版信息

Toxicol Rev. 2006;25(1):37-54. doi: 10.2165/00139709-200625010-00003.

Abstract

Clinical signal detection of drug-induced hepatic effects is a very inexact science. Ordinary clinical laboratory tests are the primary biomarkers for liver changes. Heuristic rules have been developed by clinicians for diagnosing liver disease and monitoring these changes. These are based on laboratory reference limits, which are also largely heuristic. This article reviews some of the statistical characteristics of univariate reference limits and shows how they can and should be extended to multivariate reference regions. For instance, in the univariate approach, the probability of a false positive cannot be specified and grows with increasing numbers of analytes evaluated. However, accurate reference regions require very large samples from reference populations. Although the uniformly minimum variance unbiased estimator can greatly improve the mean-squared-error efficiency relative to a maximum likelihood estimator, it still requires tens of thousands of reference samples to estimate the 95% reference region for 20 analytes to an order of 95 +/- 1%, for example. Methods for constructing the elliptical reference region estimators and for sample size determination are provided. It is not feasible for small laboratories to make these calculations unless more rigorous methods of standardisation can be imposed and data merged across institutions. Large healthcare systems with electronic medical records and large pharmaceutical companies singly or in collaboration could generate sufficient sample sizes for accurate reference regions if techniques to make inter-laboratory results comparable are implemented. Exiting a reference region, whether population-based or individualised, can only tell you when the patient has changed from steady state. The region into which the patient's results enter and dynamics of this change are likely to contain considerable biological information. An example of this is Hy's rule. As the number of new, expensive biomarkers grows, it may be more cost-effective to find better ways to use the data we already collect, using the new biomarkers for validation. Mathematics and computers can help do this.

摘要

药物性肝损伤的临床信号检测是一门极不精确的科学。常规临床实验室检测是肝脏变化的主要生物标志物。临床医生已制定出启发式规则用于诊断肝脏疾病并监测这些变化。这些规则基于实验室参考限值,而这些限值在很大程度上也是启发式的。本文回顾了单变量参考限值的一些统计特征,并展示了如何以及为何应将其扩展到多变量参考区域。例如,在单变量方法中,假阳性的概率无法确定,且会随着评估的分析物数量增加而增大。然而,准确的参考区域需要来自参考人群的非常大的样本。尽管均匀最小方差无偏估计器相对于最大似然估计器可以极大地提高均方误差效率,但例如要估计20种分析物的95%参考区域,使其达到95±1%的精度,仍需要数万个参考样本。本文提供了构建椭圆形参考区域估计器和确定样本量的方法。对于小型实验室来说,除非能实施更严格的标准化方法并合并各机构的数据,否则进行这些计算是不可行的。如果实施了使实验室间结果具有可比性的技术,拥有电子病历的大型医疗系统以及大型制药公司单独或合作,能够生成足够的样本量以获得准确的参考区域。超出参考区域,无论是基于人群的还是个体化的,只能告诉你患者何时从稳态发生了变化。患者结果进入的区域以及这种变化的动态过程可能包含相当多的生物学信息。海氏法则就是一个例子。随着新型昂贵生物标志物数量的增加,找到更好的方法利用我们已经收集的数据可能更具成本效益,而将新型生物标志物用于验证。数学和计算机可以帮助实现这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验