Gustincich Stefano, Sandelin Albin, Plessy Charles, Katayama Shintaro, Simone Roberto, Lazarevic Dejan, Hayashizaki Yoshihide, Carninci Piero
Sector of Neurobiology, International School for Advanced Studies (ISAS)-SISSA, AREA Science Park, SS 14, Km 163,5, Basovizza, 34012 Trieste, Italy.
J Physiol. 2006 Sep 1;575(Pt 2):321-32. doi: 10.1113/jphysiol.2006.115568. Epub 2006 Jul 20.
A comprehensive understanding of protein and regulatory networks is strictly dependent on the complete description of the transcriptome of cells. After the determination of the genome sequence of several mammalian species, gene identification is based on in silico predictions followed by evidence of transcription. Conservative estimates suggest that there are about 20,000 protein-encoding genes in the mammalian genome. In the last few years the combination of full-length cDNA cloning, cap-analysis gene expression (CAGE) tag sequencing and tiling arrays experiments have unveiled unexpected additional complexities in the transcriptome. Here we describe the current view of the mammalian transcriptome focusing on transcripts diversity, the growing non-coding RNA world, the organization of transcriptional units in the genome and promoter structures. In-depth analysis of the brain transcriptome has been challenging due to the cellular complexity of this organ. Here we present a computational analysis of CAGE data from different regions of the central nervous system, suggesting distinctive mechanisms of brain-specific transcription.
对蛋白质和调控网络的全面理解严格依赖于对细胞转录组的完整描述。在确定了几种哺乳动物物种的基因组序列之后,基因鉴定基于计算机预测,随后是转录证据。保守估计表明,哺乳动物基因组中约有20000个蛋白质编码基因。在过去几年中,全长cDNA克隆、帽分析基因表达(CAGE)标签测序和平铺阵列实验的结合揭示了转录组中意想不到的额外复杂性。在这里,我们描述了哺乳动物转录组的当前观点,重点关注转录本多样性、不断发展的非编码RNA世界、基因组中转录单元的组织和启动子结构。由于大脑器官的细胞复杂性,对大脑转录组的深入分析一直具有挑战性。在这里,我们展示了对来自中枢神经系统不同区域的CAGE数据的计算分析,表明了大脑特异性转录的独特机制。