Skedros John G, Dayton Michael R, Sybrowsky Christian L, Bloebaum Roy D, Bachus Kent N
Utah Bone and Joint Center, 5323 S. Woodrow Street #202, Salt Lake City, UT 84107, USA.
J Exp Biol. 2006 Aug;209(Pt 15):3025-42. doi: 10.1242/jeb.02304.
This study examined relative influences of predominant collagen fiber orientation (CFO), mineralization (% ash), and other microstructural characteristics on the mechanical properties of equine cortical bone. Using strain-mode-specific (S-M-S) testing (compression testing of bone habitually loaded in compression; tension testing of bone habitually loaded in tension), the relative mechanical importance of CFO and other material characteristics were examined in equine third metacarpals (MC3s). This model was chosen since it had a consistent non-uniform strain distribution estimated by finite element analysis (FEA) near mid-diaphysis of a thoroughbred horse, net tension in the dorsal/lateral cortices and net compression in the palmar/medial cortices. Bone specimens from regions habitually loaded in tension or compression were: (1) tested to failure in both axial compression and tension in order to contrast S-M-S vs non-S-M-S behavior, and (2) analyzed for CFO, % ash, porosity, fractional area of secondary osteonal bone, osteon cross-sectional area, and population densities of secondary osteons and osteocyte lacunae. Multivariate multiple regression analyses revealed that in S-M-S compression testing, CFO most strongly influenced total energy (pre-yield elastic energy plus post-yield plastic energy); in S-M-S tension testing CFO most strongly influenced post-yield energy and total energy. CFO was less important in explaining S-M-S elastic modulus, and yield and ultimate stress. Therefore, in S-M-S loading CFO appears to be important in influencing energy absorption, whereas the other characteristics have a more dominant influence in elastic modulus, pre-yield behavior and strength. These data generally support the hypothesis that differentially affecting S-M-S energy absorption may be an important consequence of regional histocompositional heterogeneity in the equine MC3. Data inconsistent with the hypothesis, including the lack of highly longitudinal collagen in the dorsal-lateral ;tension' region, paradoxical histologic organization in some locations, and lack of significantly improved S-M-S properties in some locations, might reflect the absence of a similar habitual strain distribution in all bones. An alternative strain distribution based on in vivo strain measurements, without FEA, on non-Thoroughbreds showing net compression along the dorsal-palmar axis might be more characteristic of the habitual loading of some of the bones that we examined. In turn, some inconsistencies might also reflect the complex torsion/bending loading regime that the MC3 sustains when the animal undergoes a variety of gaits and activities, which may be representative of only a portion of our animals, again reflecting the possibility that not all of the bones examined had similar habitual loading histories.
本研究考察了主要胶原纤维取向(CFO)、矿化程度(灰分百分比)及其他微观结构特征对马皮质骨力学性能的相对影响。采用应变模式特异性(S-M-S)测试(对习惯性承受压缩载荷的骨进行压缩测试;对习惯性承受拉伸载荷的骨进行拉伸测试),在马第三掌骨(MC3)中考察了CFO和其他材料特征的相对力学重要性。选择该模型是因为通过有限元分析(FEA)估计,在纯种马骨干中部附近其具有一致的非均匀应变分布,背侧/外侧皮质存在净拉伸,掌侧/内侧皮质存在净压缩。对习惯性承受拉伸或压缩载荷区域的骨标本进行:(1)在轴向压缩和拉伸中测试至破坏,以对比S-M-S与非S-M-S行为;(2)分析CFO、灰分百分比、孔隙率、次生骨单位骨的分数面积、骨单位横截面积以及次生骨单位和骨细胞陷窝的群体密度。多变量多元回归分析显示,在S-M-S压缩测试中,CFO对总能量(屈服前弹性能量加屈服后塑性能量)影响最强;在S-M-S拉伸测试中,CFO对屈服后能量和总能量影响最强。CFO在解释S-M-S弹性模量、屈服应力和极限应力方面不太重要。因此,在S-M-S加载中,CFO似乎对能量吸收有重要影响,而其他特征在弹性模量、屈服前行为和强度方面有更主要的影响。这些数据总体上支持这样的假设,即对S-M-S能量吸收的差异影响可能是马MC3区域组织成分异质性的一个重要结果。与该假设不一致的数据,包括背外侧“拉伸”区域缺乏高度纵向的胶原、某些位置存在反常的组织学结构以及某些位置S-M-S性能未显著改善,可能反映了并非所有骨骼都具有类似的习惯性应变分布。基于对非纯种马的体内应变测量(无需FEA)得出的另一种应变分布,显示沿背-掌轴存在净压缩,这可能更能代表我们所检查的一些骨骼的习惯性载荷特征。反过来,一些不一致之处也可能反映了MC3在动物进行各种步态和活动时所承受的复杂扭转/弯曲载荷模式,这可能仅代表我们部分动物的情况,再次反映了并非所有检查的骨骼都具有相似习惯性载荷历史的可能性。