Suppr超能文献

胶原纤维取向模式、骨单位形态和分布以及层状组织学的存在并不能区分蝙蝠和鸽子翅膀骨骼中的扭转与弯曲。

Collagen fiber orientation pattern, osteon morphology and distribution, and presence of laminar histology do not distinguish torsion from bending in bat and pigeon wing bones.

机构信息

Bone and Joint Research Laboratory, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA.

Department of Orthopaedic Surgery, The University of Utah, Salt Lake City, UT, USA.

出版信息

J Anat. 2019 Jun;234(6):748-763. doi: 10.1111/joa.12981. Epub 2019 Mar 29.

Abstract

Bone can adapt to its habitual load history at various levels of its hierarchical structural and material organization. However, it is unclear how strongly a bone's structural characteristics (e.g. cross-sectional shape) are linked to microstructural characteristics (e.g. distributions of osteons and their vascular canals) or ultrastructural characteristics [e.g. patterns of predominant collagen fiber orientation (CFO)]. We compared the cross-sectional geometry, microstructure and ultrastructure of pigeon (Columba livia domestica) humeri, and third metacarpals (B3M) and humeri of a large bat (Pteropus poliocephalus). The pigeon humerus is habitually torsionally loaded, and has unremodeled ('primary') bone with vessels (secondary osteons are absent) and high 'laminarity' because a large majority of these vessels course circularly with respect to the bone's external surface. In vivo data show that the bat humerus is also habitually torsionally loaded; this contrasts with habitual single-plane bending of the B3M, where in vivo data show that it oscillates back and forth in the same direction. In contrast to pigeon humeri where laminar bone is present, the primary tissue of these bat bones is largely avascular, but secondary osteons are present and are usually in the deeper cortex. Nevertheless, the load history of humeri of both species is prevalent/predominant torsion, producing diffusely distributed shear stresses throughout the cross-section. We tested the hypothesis that despite microstructural/osteonal differences in these pigeon and bat bones, they will have similar characteristics at the ultrastructural level that adapt each bone for its load history. We postulate that predominant CFO is this characteristic. However, even though data reported in prior studies of bones of non-flying mammals suggest that CFO would show regional variations in accordance with the habitual 'tension regions' and 'compression regions' in the direction of unidirectional habitual bending, we hypothesized that alternating directions of bending within the same plane would obviate these regional/site-specific adaptations in the B3M. Similarly, but for other reasons, we did not expect regional variations in CFO in the habitually torsionally loaded bat and pigeon humeri because uniformly oblique-to-transverse CFO is the adaptation expected for the diffusely distributed shear stresses produced by torsion/multidirectional loads. We analyzed transverse sections from mid-diaphyses of adult bones for CFO, secondary osteon characteristics (size, shape and population density), cortical thickness in quadrants of the cortex, and additional measures of cross-sectional geometry, including the degree of circular shape that can help distinguish habitual torsion from bending. Results showed the expected lack of regional CFO differences in quasi-circular shaped, and torsionally loaded, pigeon and bat humeri. As expected, the B3M also lacked CFO variations between the opposing cortices along the plane of bending, and the quasi-elliptical cross-sectional shape and regional microstructural/osteonal variations expected for bending were not found. These findings in the B3M show that uniformity in CFO does not always reflect habitual torsional loads. Osteon morphology and distribution, and presence of laminar histology also do not distinguish torsion from bending in these bat and pigeon wing bones.

摘要

骨骼可以在其层次结构和材料组织的各个水平上适应其习惯性的负荷历史。然而,目前尚不清楚骨骼的结构特征(例如,横截面形状)与微观结构特征(例如,骨单位及其血管的分布)或超微结构特征[例如,主要胶原纤维取向(CFO)的模式]之间的联系有多紧密。我们比较了鸽子(Columba livia domestica)肱骨、第三掌骨(B3M)和大型蝙蝠(Pteropus poliocephalus)肱骨的横截面几何形状、微观结构和超微结构。鸽子肱骨习惯性地承受扭转力,具有未改建的(“原发性”)骨骼和血管(不存在次级骨单位),并且具有较高的“层状”,因为大多数血管相对于骨骼的外表面呈圆形排列。体内数据表明,蝙蝠肱骨也习惯性地承受扭转力;这与 B3M 的习惯性单平面弯曲形成对比,体内数据表明 B3M 以相同的方向前后摆动。与存在层状骨的鸽子肱骨不同,这些蝙蝠骨骼的主要组织大部分是无血管的,但存在次级骨单位,通常位于较深的皮质中。然而,这两种物种肱骨的负荷史都是普遍的扭转,在整个横截面上产生弥散分布的剪切应力。我们检验了一个假设,即尽管这些鸽子和蝙蝠骨骼的微观结构/骨单位存在差异,但它们在超微结构水平上仍具有适应其负荷历史的相似特征。我们推测主要 CFO 就是这种特征。然而,尽管先前对非飞行哺乳动物骨骼的研究报告的数据表明,CFO 会根据单向习惯性弯曲方向上的习惯性“张力区”和“压缩区”出现区域变化,但我们假设同一平面内弯曲方向的交替会消除 B3M 中的这些区域/特定适应性。同样,由于其他原因,我们预计习惯性扭转的蝙蝠和鸽子肱骨中不会出现 CFO 的区域变化,因为均匀的斜向到横向的 CFO 是预期用于扭转/多向负荷产生的弥散分布剪切应力的适应性。我们分析了成年骨骼中骨髓中部的横切面的 CFO、次级骨单位特征(大小、形状和种群密度)、皮质厚度在皮质的象限中,以及其他横截面几何形状的测量,包括有助于区分习惯性扭转和弯曲的圆形度。结果表明,预期在准圆形和扭转负荷的鸽子和蝙蝠肱骨中不存在区域 CFO 差异。正如预期的那样,B3M 也没有在弯曲平面上的对侧皮质之间出现 CFO 变化,并且没有发现弯曲预期的准椭圆形横截面形状和区域微观结构/骨单位变化。B3M 中的这些发现表明,CFO 的一致性并不总是反映习惯性扭转负荷。骨单位形态和分布以及层状组织学也不能区分这些蝙蝠和鸽子翼骨中的扭转和弯曲。

相似文献

本文引用的文献

4
Collagen Fiber Orientation in Primate Long Bones.灵长类动物长骨中胶原纤维的取向
Anat Rec (Hoboken). 2017 Jul;300(7):1189-1207. doi: 10.1002/ar.23571. Epub 2017 Mar 31.
6
Bilateral stress fracture of femoral neck in non-athlete - case report.非运动员双侧股骨颈应力性骨折——病例报告
Rev Bras Ortop. 2016 Nov 2;51(6):735-738. doi: 10.1016/j.rboe.2016.10.013. eCollection 2016 Nov-Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验