Suppr超能文献

微结构域和细胞骨架网络对质膜中分子的动态限制作用

Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.

作者信息

Lenne Pierre-François, Wawrezinieck Laure, Conchonaud Fabien, Wurtz Olivier, Boned Annie, Guo Xiao-Jun, Rigneault Hervé, He Hai-Tao, Marguet Didier

机构信息

Institut Fresnel, Université Paul Cézanne, Marseille, France [2] CNRS UMR 6133, Marseille, France.

出版信息

EMBO J. 2006 Jul 26;25(14):3245-56. doi: 10.1038/sj.emboj.7601214. Epub 2006 Jul 6.

Abstract

It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø <120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.

摘要

如今人们普遍认识到,细胞膜呈现出复杂的侧向组织模式。两种机制,一种涉及脂质依赖性(微区模型)过程,另一种基于细胞骨架(网络模型)过程,被认为是这些质膜组织形成的原因。在本研究中,进行了各种空间尺度上的荧光相关光谱测量,以便在活细胞中以高时间分辨率直接识别和表征这两种过程,同时不损失任何空间信息。发现假定的脂筏标记物在几十毫秒内动态分隔成小的微区(直径<120 nm),这些微区对胆固醇和鞘磷脂水平敏感,而基于肌动蛋白的细胞骨架屏障负责转铁蛋白受体蛋白的限制。当脂质依赖性和基于细胞骨架的组织都被破坏时,观察到一种类似自由扩散的现象,这表明它们是在质膜中起作用的两种主要分隔力。

相似文献

1
Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
EMBO J. 2006 Jul 26;25(14):3245-56. doi: 10.1038/sj.emboj.7601214. Epub 2006 Jul 6.
2
Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.
Biophys J. 2005 Dec;89(6):4029-42. doi: 10.1529/biophysj.105.067959. Epub 2005 Sep 30.
3
Separation of actin-dependent and actin-independent lipid rafts.
Anal Biochem. 2013 Jul 15;438(2):133-5. doi: 10.1016/j.ab.2013.03.018. Epub 2013 Mar 26.
4
Rafts--the current picture.
Folia Histochem Cytobiol. 2005;43(1):3-10.
5
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
6
H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15500-5. doi: 10.1073/pnas.0504114102. Epub 2005 Oct 13.
8
Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane.
Sci Rep. 2016 Oct 11;6:34987. doi: 10.1038/srep34987.
9
Update on lipid membrane microdomains.
Curr Opin Clin Nutr Metab Care. 2008 Mar;11(2):106-12. doi: 10.1097/MCO.0b013e3282f44c2c.
10
Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.
J Phys Chem Lett. 2018 Jan 4;9(1):110-119. doi: 10.1021/acs.jpclett.7b02818. Epub 2017 Dec 19.

引用本文的文献

2
Membrane nanodomains to shape plant cellular functions and signaling.
New Phytol. 2025 Feb;245(4):1369-1385. doi: 10.1111/nph.20367. Epub 2024 Dec 25.
3
Confinement energy landscape classification reveals membrane receptor nano-organization mechanisms.
Biophys J. 2024 Jul 2;123(13):1882-1895. doi: 10.1016/j.bpj.2024.06.001. Epub 2024 Jun 6.
4
A computational analysis of the role of integrins and Rho-GTPases in the emergence and disruption of apical-basal polarization in renal epithelial cells.
PLoS Comput Biol. 2024 May 20;20(5):e1012140. doi: 10.1371/journal.pcbi.1012140. eCollection 2024 May.
7
Single-photon microscopy to study biomolecular condensates.
Nat Commun. 2023 Dec 12;14(1):8224. doi: 10.1038/s41467-023-43969-7.
8
Investigation of nano- and microdomains formed by ceramide 1 phosphate in lipid bilayers.
Sci Rep. 2023 Oct 30;13(1):18570. doi: 10.1038/s41598-023-45575-5.
9
EFR3A: a new raft domain organizing protein?
Cell Mol Biol Lett. 2023 Oct 25;28(1):86. doi: 10.1186/s11658-023-00497-y.
10
Mechanical stimulation from the surrounding tissue activates mitochondrial energy metabolism in Drosophila differentiating germ cells.
Dev Cell. 2023 Nov 6;58(21):2249-2260.e9. doi: 10.1016/j.devcel.2023.08.007. Epub 2023 Aug 29.

本文引用的文献

1
Dynamics in the plasma membrane: how to combine fluidity and order.
EMBO J. 2006 Aug 9;25(15):3446-57. doi: 10.1038/sj.emboj.7601204. Epub 2006 Jun 22.
2
Phase coexistence and connectivity in the apical membrane of polarized epithelial cells.
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):329-34. doi: 10.1073/pnas.0509885103. Epub 2006 Jan 3.
3
Cholesterol depletion induces solid-like regions in the plasma membrane.
Biophys J. 2006 Feb 1;90(3):927-38. doi: 10.1529/biophysj.105.070524. Epub 2005 Nov 4.
4
H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15500-5. doi: 10.1073/pnas.0504114102. Epub 2005 Oct 13.
5
Fluorescence corralation spectroscopy.
Biophys J. 2005 Dec;89(6):3678-9. doi: 10.1529/biophysj.105.074161. Epub 2005 Sep 30.
6
Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.
Biophys J. 2005 Dec;89(6):4029-42. doi: 10.1529/biophysj.105.067959. Epub 2005 Sep 30.
7
Cellular lipidomics.
EMBO J. 2005 Sep 21;24(18):3159-65. doi: 10.1038/sj.emboj.7600798. Epub 2005 Sep 1.
9
Polyene-lipids: a new tool to image lipids.
Nat Methods. 2005 Jan;2(1):39-45. doi: 10.1038/nmeth728. Epub 2004 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验