Suppr超能文献

用于探测亚微米级细胞膜组织的荧光相关光谱扩散定律。

Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.

作者信息

Wawrezinieck Laure, Rigneault Hervé, Marguet Didier, Lenne Pierre-François

机构信息

Institut Fresnel, MOSAIC Group, CNRS UMR 6133-Université Paul Cézanne Aix-Marseille III, Domaine Universitaire de Saint Jérôme, F-13397 Marseille Cedex 20, France.

出版信息

Biophys J. 2005 Dec;89(6):4029-42. doi: 10.1529/biophysj.105.067959. Epub 2005 Sep 30.

Abstract

To probe the complexity of the cell membrane organization and dynamics, it is important to obtain simple physical observables from experiments on live cells. Here we show that fluorescence correlation spectroscopy (FCS) measurements at different spatial scales enable distinguishing between different submicron confinement models. By plotting the diffusion time versus the transverse area of the confocal volume, we introduce the so-called FCS diffusion law, which is the key concept throughout this article. First, we report experimental FCS diffusion laws for two membrane constituents, which are respectively a putative raft marker and a cytoskeleton-hindered transmembrane protein. We find that these two constituents exhibit very distinct behaviors. To understand these results, we propose different models, which account for the diffusion of molecules either in a membrane comprising isolated microdomains or in a meshwork. By simulating FCS experiments for these two types of organization, we obtain FCS diffusion laws in agreement with our experimental observations. We also demonstrate that simple observables derived from these FCS diffusion laws are strongly related to confinement parameters such as the partition of molecules in microdomains and the average confinement time of molecules in a microdomain or a single mesh of a meshwork.

摘要

为了探究细胞膜组织和动力学的复杂性,从活细胞实验中获取简单的物理可观测量非常重要。在这里,我们表明在不同空间尺度下的荧光相关光谱(FCS)测量能够区分不同的亚微米限制模型。通过绘制扩散时间与共聚焦体积横向面积的关系图,我们引入了所谓的FCS扩散定律,这是贯穿本文的关键概念。首先,我们报告了两种膜成分的实验FCS扩散定律,它们分别是一种假定的脂筏标记物和一种受细胞骨架阻碍的跨膜蛋白。我们发现这两种成分表现出非常不同的行为。为了理解这些结果,我们提出了不同的模型,这些模型分别解释了分子在包含孤立微区的膜中或在网络中的扩散情况。通过对这两种组织类型的FCS实验进行模拟,我们得到了与实验观察结果一致的FCS扩散定律。我们还证明,从这些FCS扩散定律得出的简单可观测量与限制参数密切相关,如分子在微区中的分配以及分子在微区或网络单个网格中的平均限制时间。

相似文献

4
The imaging FCS diffusion law in the presence of multiple diffusive modes.存在多种扩散模式时的成像 FCS 扩散定律。
Methods. 2018 May 1;140-141:140-150. doi: 10.1016/j.ymeth.2017.11.016. Epub 2017 Dec 5.

引用本文的文献

4
Quantification of membrane fluidity in bacteria using TIR-FCS.使用 TIR-FCS 量化细菌中的膜流动性。
Biophys J. 2024 Aug 20;123(16):2484-2495. doi: 10.1016/j.bpj.2024.06.012. Epub 2024 Jun 13.
5
Experimentally Probing the Effect of Confinement Geometry on Lipid Diffusion.实验探究受限几何结构对脂质扩散的影响。
J Phys Chem B. 2024 May 9;128(18):4404-4413. doi: 10.1021/acs.jpcb.3c07388. Epub 2024 Apr 4.
9
Forces and Flows at Cell Surfaces.细胞表面的力与流
J Membr Biol. 2023 Dec;256(4-6):331-340. doi: 10.1007/s00232-023-00293-x. Epub 2023 Sep 29.

本文引用的文献

2
Polyene-lipids: a new tool to image lipids.多烯脂质:一种用于脂质成像的新工具。
Nat Methods. 2005 Jan;2(1):39-45. doi: 10.1038/nmeth728. Epub 2004 Dec 21.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验