Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France.
Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Decision and Bayesian Computation, Paris, France; Épiméthée, INRIA, Paris, France.
Biophys J. 2024 Jul 2;123(13):1882-1895. doi: 10.1016/j.bpj.2024.06.001. Epub 2024 Jun 6.
The cell membrane organization has an essential functional role through the control of membrane receptor confinement in micro- or nanodomains. Several mechanisms have been proposed to account for these properties, although some features have remained controversial, notably the nature, size, and stability of cholesterol- and sphingolipid-rich domains or lipid rafts. Here, we probed the effective energy landscape acting on single-nanoparticle-labeled membrane receptors confined in raft nanodomains- epidermal growth factor receptor (EGFR), Clostridium perfringens ε-toxin receptor (CPεTR), and Clostridium septicum α-toxin receptor (CSαTR)-and compared it with hop-diffusing transferrin receptors. By establishing a new analysis pipeline combining Bayesian inference, decision trees, and clustering approaches, we systematically classified single-protein trajectories according to the type of effective confining energy landscape. This revealed the existence of only two distinct organization modalities: confinement in a quadratic energy landscape for EGFR, CPεTR, and CSαTR (A), and free diffusion in confinement domains resulting from the steric hindrance due to F-actin barriers for transferrin receptor (B). The further characterization of effective confinement energy landscapes by Bayesian inference revealed the role of interactions with the domain environment in cholesterol- and sphingolipid-rich domains with (EGFR) or without (CPεTR and CSαTR) interactions with F-actin to regulate the confinement energy depth. These two distinct mechanisms result in the same organization type (A). We revealed that the apparent domain sizes for these receptor trajectories resulted from Brownian exploration of the energy landscape in a steady-state-like regime at a common effective temperature, independently of the underlying molecular mechanisms. These results highlight that confinement domains may be adequately described as interaction hotspots rather than rafts with abrupt domain boundaries. Altogether, these results support a new model for functional receptor confinement in membrane nanodomains and pave the way to the constitution of an atlas of membrane protein organization.
细胞膜的组织通过控制膜受体在微纳域中的限制发挥着重要的功能作用。虽然已经提出了几种机制来解释这些特性,但有些特征仍然存在争议,特别是胆固醇和鞘脂丰富的域或脂质筏的性质、大小和稳定性。在这里,我们探测了作用于限制在筏纳米域中的单纳米粒子标记的膜受体的有效能量景观 - 表皮生长因子受体(EGFR)、产气荚膜梭菌 ε 毒素受体(CPεTR)和产气荚膜梭菌 α 毒素受体(CSαTR) - 并将其与 hop-diffusing 转铁蛋白受体进行了比较。通过建立一个新的分析管道,结合贝叶斯推理、决策树和聚类方法,我们根据有效限制能量景观的类型系统地对单个蛋白轨迹进行分类。这揭示了仅存在两种不同的组织模式:对于 EGFR、CPεTR 和 CSαTR 存在限制在二次能量景观中的组织模式(A),以及由于 F-肌动蛋白障碍引起的空间位阻导致在限制域中自由扩散的组织模式(B)。通过贝叶斯推理对有效限制能量景观的进一步特征分析揭示了与域环境相互作用的作用,这种相互作用存在于富含胆固醇和鞘脂的域中(EGFR)或不存在(CPεTR 和 CSαTR)与 F-肌动蛋白的相互作用,以调节限制能量深度。这两种不同的机制导致相同的组织类型(A)。我们揭示了这些受体轨迹的表观域大小是由于在共同的有效温度下,在类似于稳态的状态下对能量景观进行布朗探索,而与潜在的分子机制无关。这些结果强调了限制域可以被充分描述为相互作用热点,而不是具有突然域边界的筏。总之,这些结果支持了膜纳米域中功能性受体限制的新模型,并为膜蛋白组织的图谱的构成铺平了道路。