Velásquez Pablo, Leinen Dietmar, Pascual José, Ramos-Barrado José Ramón, Grez Paula, Gómez Humberto, Schrebler Ricardo, Del Río Rodrigo, Córdova Ricardo
Instituto de Bioingeniería, Departamento de Ciencia y Tecnología de Materiales, Universidad Miguel Hernández, E03202 Elche (Alicante) Spain.
J Phys Chem B. 2005 Mar 24;109(11):4977-88. doi: 10.1021/jp048273u.
Electrodic surfaces of natural chalcopyrite and natural pyrite minerals (El Teniente mine, Chile) have been studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy including microanalysis (SEM/EDX). For comparison, fractured and polished mineral surfaces were also studied by XPS. In both electrodes, the formation of Fe(III) species containing oxygen were detected and Cu(II) species containing oxygen were additionally detected for chalcopyrite at advanced oxidation states. The presence of Cu(II) species containing oxygen was not detected by XPS for the initial oxidation states of the chalcopyrite. For pyrite, the present results do not allow confirmation of the presence of polysulfurs such as have been previously proposed. In both minerals, the measurements of SEM and EDX show relevant alterations in the respective surfaces when different potential values were applied. The chalcopyrite surface shows the formation of protrusions with a high concentration of oxygen. The pyrite surface shows a layer of modified material with high oxygen content. The modifications detected by XPS, SEM, and EDX allowed the explanation of the complexity of the equivalent circuit used to simulate the experimental EIS data. At high oxidation states, both minerals showed a pseudoinductive loop in the equivalent circuit, which was due to the active electrodissolution of the minerals which takes place through a surface film previously formed.
通过循环伏安法(CV)、电化学阻抗谱(EIS)、X射线光电子能谱(XPS)以及包括微分析的扫描电子显微镜(SEM/EDX),对天然黄铜矿和天然黄铁矿矿物(智利埃尔滕涅特矿)的电极表面进行了研究。为作比较,还通过XPS对破裂和抛光的矿物表面进行了研究。在这两种电极中,均检测到了含氧的Fe(III)物种,对于处于高级氧化态的黄铜矿,还额外检测到了含氧的Cu(II)物种。对于黄铜矿的初始氧化态,XPS未检测到含氧的Cu(II)物种。对于黄铁矿,目前的结果无法证实先前提出的多硫化物的存在。在这两种矿物中,当施加不同的电位值时,SEM和EDX测量结果显示各自表面发生了显著变化。黄铜矿表面显示出形成了富含氧的凸起。黄铁矿表面显示出一层含氧量高的改性材料。通过XPS、SEM和EDX检测到的这些变化有助于解释用于模拟实验EIS数据的等效电路的复杂性。在高氧化态下,这两种矿物在等效电路中均显示出一个伪电感回路,这是由于矿物通过先前形成的表面膜进行的活性电溶解所致。