Dewald Georg F, Liaqat Zainab, Lange Martin Alexander, Tremel Wolfgang, Zeier Wolfgang G
Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.
Chemistry Department, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
Angew Chem Int Ed Engl. 2021 Aug 9;60(33):17952-17956. doi: 10.1002/anie.202106018. Epub 2021 Jul 9.
Given the inherent performance limitations of intercalation-based lithium-ion batteries, solid-state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS ) a promising cathode-active material. In this work, FeS nanoparticles were prepared solvothermally. By adjusting the synthesis conditions, samples with average particle diameters between 10 nm and 35 nm were synthesized. The electrochemical performance was evaluated in solid-state cells with a Li-argyrodite solid electrolyte. While the reduction of FeS was found to be irreversible in the initial discharge, a stable cycling of the reduced species was observed subsequently. A positive effect of smaller particle dimensions on FeS utilization was identified, which can be attributed to a higher interfacial contact area and shortened diffusion pathways inside the FeS particles. These results highlight the general importance of morphological design to exploit the promising theoretical capacity of conversion electrodes in solid-state batteries.
鉴于基于嵌入的锂离子电池固有的性能限制,固态转换电池是未来储能的有前景的系统。高比容量和天然丰度使二硫化铁(FeS₂)成为一种有前景的正极活性材料。在这项工作中,通过溶剂热法制备了FeS₂纳米颗粒。通过调整合成条件,合成了平均粒径在10纳米至35纳米之间的样品。在具有锂硫银锗矿固体电解质的固态电池中评估了其电化学性能。虽然发现在初次放电时FeS₂的还原是不可逆的,但随后观察到还原产物的稳定循环。确定了较小颗粒尺寸对FeS₂利用率的积极影响,这可归因于更高的界面接触面积和FeS₂颗粒内部缩短的扩散路径。这些结果突出了形态设计对于利用固态电池中转换电极有前景的理论容量的普遍重要性。