Slezak Andrzej, Slezak Izabella, Bryll Arkadiusz, Jasik-Slezak Jolanta, Młynarski Jacek
Department of Biology and Biophysics, Czgstochowa University of Technology.
Polim Med. 2006;36(1):41-6.
In the paper, by applicating the classic definition of concentration Rayleigh number and the second Kedem-Katchalsky equation, there was deriven the equation of the fourth degree, which makes thicknesses (deltah and deltal) dependent on the concentration difference (Ch-Cl), concentration Rayleigh number (Rc), membrane permeability parameters (omega, xi s) and solutions (Dl, Dh), physico-chemical parameters of solutions (v(l), v(h), rho l, rho h, delta rho/deltaC), temperature (T) and gravitational acceleration (g). On the basis of the obtained formula for isothermal conditions (T = const) and constant gravitational field (g = const), there were calculated non-linear dependencies delta h = f(Ch-Cl)(Rc, zeta s), delta h = f (Rc)((Ch-Cl),zeta s) and delta h = f(delta s)((Ch-Cl),Rc).
在该论文中,通过应用浓度瑞利数的经典定义和第二个凯德姆 - 卡察尔斯基方程,推导得出了四次方程,该方程使厚度(δh和δl)取决于浓度差(Ch - Cl)、浓度瑞利数(Rc)、膜渗透参数(ω,ξs)和溶液(Dl,Dh)、溶液的物理化学参数(v(l),v(h),ρl,ρh,δρ/δC)、温度(T)和重力加速度(g)。基于在等温条件(T = 常数)和恒定重力场(g = 常数)下获得的公式,计算了非线性相关性δh = f(Ch - Cl)(Rc, ζs)、δh = f (Rc)((Ch - Cl),ζs) 和δh = f(δs)((Ch - Cl),Rc)。