Slezak Andrzej, Grzegorczyn Sławomir
Zakład Biologii i Biofizyki, Politechnika Czestochowska, Czestochowa Katedra Biofizyki, Slaska Akademia Medyczna, Zabrze.
Polim Med. 2007;37(2):67-79.
The nonlinear mathematical model equations for membrane transport of binary non-electrolyte solutions was presented. This model, the influence of the volume flows caused by simultaneous action of osmotic and hydraulic forces in concentration boundary layers creation, controlled by concentration Rayleigh number is taken into account. In a basis of obtained fourth order equations, the numerical calculations of concentration boundary layers thicknesses (delta(l) and delta(h)) for five variables: concentration (C(h)), hydrostatic pressure difference (deltaP), hydraulic permeability (L(p)), reflection (sigma), solute permeability (omega) coefficients and concentration Rayleigh number (R(c)) were performed. Characteristics obtained in the study show that external forces cause nonlinear increase or decrease of the concentration boundary layers thicknesses.
提出了二元非电解质溶液膜传输的非线性数学模型方程。该模型考虑了由渗透力和水力同时作用在浓度边界层形成过程中引起的体积流的影响,其受浓度瑞利数控制。在得到的四阶方程基础上,对五个变量:浓度(C(h))、静水压差(deltaP)、水力渗透率(L(p))、反射系数(sigma)、溶质渗透率(omega)系数和浓度瑞利数(R(c))进行了浓度边界层厚度(delta(l)和delta(h))的数值计算。研究中获得的特性表明,外力会导致浓度边界层厚度非线性增加或减小。