Suppr超能文献

吸收腔对松质骨强度影响的生物力学分析。

A biomechanical analysis of the effects of resorption cavities on cancellous bone strength.

作者信息

Hernandez Christopher J, Gupta Atul, Keaveny Tony M

机构信息

Department of Mechanical Engineering, Orthhopaedic Biomechanics Laboratory, University of California, Berkeley, CA, USA.

出版信息

J Bone Miner Res. 2006 Aug;21(8):1248-55. doi: 10.1359/jbmr.060514.

Abstract

UNLABELLED

We evaluated the effects of resorption cavities on cancellous bone strength using computational methods. Adding cavities to cancellous bone caused reductions in strength and stiffness that were greater than expected from the associated changes in bone volume and more pronounced when cavities were targeted to regions of high tissue strain.

INTRODUCTION

The amount of bone turnover in the skeleton has recently been implicated as a factor influencing bone strength. One mechanism proposed to explain this effect is that resorption cavities reduce the effective thickness of trabeculae and modify local stress distributions leading to reduced mechanical performance of the entire structure. In this study, we tested the plausibility of this mechanism.

MATERIALS AND METHODS

High-resolution finite element models were created from muCT images of 16 vertebral cancellous bone samples, as well as from images of the samples in which cavities had been added digitally-either at regions of high strain (targeted) or placed at random on the bone surface (nontargeted). The effect of resorption cavities on predicted bone strength and stiffness was evaluated by comparing the relationships between mechanical properties and bone volume fraction among the three groups (the original images, those with nontargeted cavities, and those with targeted cavities).

RESULTS

Addition of resorption cavities modified the relationship between mechanical properties and bone volume fraction in the finite element models such that, for a given bone volume fraction, stiffness and yield strength were reduced compared with the original images (p < 0.05). The differences in yield strength-volume fraction relationships between the original models and those with targeted cavities were significantly greater than those between the original models and those with nontargeted cavities (p < 0.05). None of the differences in predicted mechanical properties per unit bone volume fraction could be accounted for by 3D measures of microarchitecture.

CONCLUSIONS

Resorption cavities may influence cancellous bone strength and stiffness independent of their effect on bone volume. The effects of cavities on bone mechanical performance relative to bone volume are greater when cavities are targeted to regions of high strain and cannot be predicted using standard microarchitecture measures.

摘要

未标注

我们使用计算方法评估了吸收腔对松质骨强度的影响。向松质骨中添加腔体会导致强度和刚度降低,且这种降低幅度大于骨体积相关变化所预期的程度,当腔体位于高组织应变区域时更为明显。

引言

骨骼中的骨转换量最近被认为是影响骨强度的一个因素。为解释这种影响而提出的一种机制是,吸收腔会减小小梁的有效厚度并改变局部应力分布,从而导致整个结构的力学性能下降。在本研究中,我们检验了这种机制的合理性。

材料与方法

从16个椎体松质骨样本的显微CT图像创建高分辨率有限元模型,以及从数字添加了腔体的样本图像创建模型——腔体添加在高应变区域(靶向)或随机置于骨表面(非靶向)。通过比较三组(原始图像、带有非靶向腔体的图像和带有靶向腔体的图像)力学性能与骨体积分数之间的关系,评估吸收腔对预测骨强度和刚度的影响。

结果

在有限元模型中,添加吸收腔改变了力学性能与骨体积分数之间的关系,使得对于给定的骨体积分数,与原始图像相比,刚度和屈服强度降低(p < 0.05)。原始模型与带有靶向腔体的模型之间屈服强度 - 体积分数关系的差异显著大于原始模型与带有非靶向腔体的模型之间的差异(p < 0.05)。单位骨体积分数预测力学性能的差异均不能用微观结构的三维测量来解释。

结论

吸收腔可能独立于其对骨体积的影响而影响松质骨强度和刚度。当腔体位于高应变区域时,腔体对骨力学性能相对于骨体积的影响更大,且无法使用标准微观结构测量来预测。

相似文献

1
A biomechanical analysis of the effects of resorption cavities on cancellous bone strength.
J Bone Miner Res. 2006 Aug;21(8):1248-55. doi: 10.1359/jbmr.060514.
4
The effect of resorption cavities on bone stiffness is site dependent.
Comput Methods Biomech Biomed Engin. 2014;17(13):1483-91. doi: 10.1080/10255842.2012.753065. Epub 2013 Jan 3.
5
Voxel size and measures of individual resorption cavities in three-dimensional images of cancellous bone.
Bone. 2009 Sep;45(3):487-92. doi: 10.1016/j.bone.2009.05.019. Epub 2009 May 28.
6
Correlation of vertebral strength topography with 3-dimensional computed tomographic structure.
Spine (Phila Pa 1976). 2013 Feb 15;38(4):339-49. doi: 10.1097/BRS.0b013e31826c670d.
8
Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
Bone. 2015 Oct;79:8-14. doi: 10.1016/j.bone.2015.05.020. Epub 2015 May 22.
9
Three-dimensional characterization of resorption cavity size and location in human vertebral trabecular bone.
Bone. 2012 Jul;51(1):28-37. doi: 10.1016/j.bone.2012.03.028. Epub 2012 Apr 3.
10
Mechanical consequences of bone loss in cancellous bone.
J Bone Miner Res. 2001 Mar;16(3):457-65. doi: 10.1359/jbmr.2001.16.3.457.

引用本文的文献

1
Training drives turnover rates in racehorse proximal sesamoid bones.
Sci Rep. 2023 Jan 27;13(1):205. doi: 10.1038/s41598-022-26027-y.
4
Region-dependent bone loss in the lumbar spine following femoral fracture in mice.
Bone. 2020 Nov;140:115555. doi: 10.1016/j.bone.2020.115555. Epub 2020 Jul 29.
6
PTH and bone material strength in hypoparathyroidism as measured by impact microindentation.
Osteoporos Int. 2020 Feb;31(2):327-333. doi: 10.1007/s00198-019-05177-2. Epub 2019 Nov 13.
8
The Influence of Cortical Porosity on the Strength of Bone During Growth and Advancing Age.
Curr Osteoporos Rep. 2018 Oct;16(5):561-572. doi: 10.1007/s11914-018-0478-0.
9
Systemic mastocytosis identified in two women developing fragility fractures during lactation.
Osteoporos Int. 2018 Jul;29(7):1671-1674. doi: 10.1007/s00198-018-4498-5. Epub 2018 Apr 4.
10
The Influence of Chronic Kidney Disease on the Structural and Mechanical Properties of Canine Bone.
J Vet Intern Med. 2018 Jan;32(1):280-287. doi: 10.1111/jvim.14879. Epub 2017 Nov 30.

本文引用的文献

1
A biomechanical perspective on bone quality.
Bone. 2006 Dec;39(6):1173-81. doi: 10.1016/j.bone.2006.06.001. Epub 2006 Jul 28.
2
Stress-concentrating effect of resorption lacunae in trabecular bone.
J Biomech. 2006;39(4):734-41. doi: 10.1016/j.jbiomech.2004.12.027.
3
An orientation distribution function for trabecular bone.
Bone. 2005 Feb;36(2):193-201. doi: 10.1016/j.bone.2004.09.023.
4
Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients.
J Bone Miner Res. 2004 Oct;19(10):1628-33. doi: 10.1359/JBMR.040710. Epub 2004 Jul 21.
5
What is the normal rate of bone remodeling?
Bone. 2004 Jul;35(1):1-3. doi: 10.1016/j.bone.2004.03.022.
8
Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.
J Biomech. 2004 Jan;37(1):27-35. doi: 10.1016/s0021-9290(03)00257-4.
10
Is the paradigm shifting?
Bone. 2003 Oct;33(4):457-65. doi: 10.1016/s8756-3282(03)00236-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验