Molle Virginie, Brown Alistair K, Besra Gurdyal S, Cozzone Alain J, Kremer Laurent
Institut de Biologie et Chimie des Protéines (IBCP UMR 5086), CNRS, Université Lyon1, IFR128 BioSciences, Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
J Biol Chem. 2006 Oct 6;281(40):30094-103. doi: 10.1074/jbc.M601691200. Epub 2006 Jul 27.
Phosphorylation of proteins by Ser/Thr protein kinases (STPKs) has recently become of major physiological importance because of its possible involvement in virulence of bacterial pathogens. Although Mycobacterium tuberculosis has eleven STPKs, the nature and function of the substrates of these enzymes remain largely unknown. In this work, we have identified for the first time STPK substrates in M. tuberculosis forming part of the type II fatty acid synthase (FAS-II) system involved in mycolic acid biosynthesis: the malonyl-CoA::AcpM transacylase mtFabD, and the beta-ketoacyl AcpM synthases KasA and KasB. All three enzymes were phosphorylated in vitro by different kinases, suggesting a complex network of interactions between STPKs and these substrates. In addition, both KasA and KasB were efficiently phosphorylated in M. bovis BCG each at different sites and could be dephosphorylated by the M. tuberculosis Ser/Thr phosphatase PstP. Enzymatic studies revealed that, whereas phosphorylation decreases the activity of KasA in the elongation process of long chain fatty acids synthesis, this modification enhances that of KasB. Such a differential effect of phosphorylation may represent an unusual mechanism of FAS-II system regulation, allowing pathogenic mycobacteria to produce full-length mycolates, which are required for adaptation and intracellular survival in macrophages.
丝氨酸/苏氨酸蛋白激酶(STPKs)对蛋白质的磷酸化作用近来在生理方面具有重要意义,因为其可能与细菌病原体的毒力有关。尽管结核分枝杆菌有11种STPKs,但这些酶的底物的性质和功能仍大多未知。在这项研究中,我们首次在结核分枝杆菌中鉴定出构成参与分枝菌酸生物合成的II型脂肪酸合酶(FAS-II)系统一部分的STPK底物:丙二酰辅酶A::AcpM转酰基酶mtFabD,以及β-酮酰基AcpM合酶KasA和KasB。所有这三种酶在体外均被不同的激酶磷酸化,这表明STPKs与这些底物之间存在复杂的相互作用网络。此外,KasA和KasB在牛分枝杆菌卡介苗中均能在不同位点被有效磷酸化,并且可以被结核分枝杆菌丝氨酸/苏氨酸磷酸酶PstP去磷酸化。酶学研究表明,在长链脂肪酸合成的延伸过程中,磷酸化会降低KasA的活性,而这种修饰会增强KasB的活性。磷酸化的这种差异效应可能代表了FAS-II系统调节的一种不同寻常的机制,使致病性分枝杆菌能够产生全长分枝菌酸,这是在巨噬细胞中适应和细胞内存活所必需的。