Suppr超能文献

使用数据驱动的多尺度方法对单色微阵列数据进行方差稳定化和归一化处理。

Variance stabilization and normalization for one-color microarray data using a data-driven multiscale approach.

作者信息

Motakis E S, Nason G P, Fryzlewicz P, Rutter G A

机构信息

Department of Mathematics, University of Bristol Bristol, UK.

出版信息

Bioinformatics. 2006 Oct 15;22(20):2547-53. doi: 10.1093/bioinformatics/btl412. Epub 2006 Jul 28.

Abstract

MOTIVATION

Many standard statistical techniques are effective on data that are normally distributed with constant variance. Microarray data typically violate these assumptions since they come from non-Gaussian distributions with a non-trivial mean-variance relationship. Several methods have been proposed that transform microarray data to stabilize variance and draw its distribution towards the Gaussian. Some methods, such as log or generalized log, rely on an underlying model for the data. Others, such as the spread-versus-level plot, do not. We propose an alternative data-driven multiscale approach, called the Data-Driven Haar-Fisz for microarrays (DDHFm) with replicates. DDHFm has the advantage of being 'distribution-free' in the sense that no parametric model for the underlying microarray data is required to be specified or estimated; hence, DDHFm can be applied very generally, not just to microarray data.

RESULTS

DDHFm achieves very good variance stabilization of microarray data with replicates and produces transformed intensities that are approximately normally distributed. Simulation studies show that it performs better than other existing methods. Application of DDHFm to real one-color cDNA data validates these results.

AVAILABILITY

The R package of the Data-Driven Haar-Fisz transform (DDHFm) for microarrays is available in Bioconductor and CRAN.

摘要

动机

许多标准统计技术对具有恒定方差的正态分布数据有效。微阵列数据通常违反这些假设,因为它们来自具有非平凡均值 - 方差关系的非高斯分布。已经提出了几种方法来转换微阵列数据以稳定方差并使其分布趋向于高斯分布。一些方法,如对数或广义对数,依赖于数据的潜在模型。其他方法,如散点图与水平图,则不依赖。我们提出了一种替代的数据驱动多尺度方法,称为用于具有重复样本的微阵列的数据驱动哈尔 - 菲什(DDHFm)。DDHFm具有“无分布”的优势,即不需要指定或估计潜在微阵列数据的参数模型;因此,DDHFm可以非常广泛地应用,而不仅仅适用于微阵列数据。

结果

DDHFm对具有重复样本的微阵列数据实现了非常好的方差稳定,并产生了近似正态分布的转换强度。模拟研究表明,它比其他现有方法表现更好。将DDHFm应用于实际的单色cDNA数据验证了这些结果。

可用性

用于微阵列的数据驱动哈尔 - 菲什变换(DDHFm)的R包可在Bioconductor和CRAN中获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验