Fang Xiao, Tiyanont Kittichoat, Zhang Yi, Wanner Jutta, Boger Dale, Walker Suzanne
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02128, USA.
Mol Biosyst. 2006 Jan;2(1):69-76. doi: 10.1039/b515328j. Epub 2005 Nov 29.
The lipoglycodepsipeptide antibiotic ramoplanin is proposed to inhibit bacterial cell wall biosynthesis by binding to intermediates along the pathway to mature peptidoglycan, which interferes with further enzymatic processing. Two sequential enzymatic steps can be blocked by ramoplanin, but there is no definitive information about whether one step is inhibited preferentially. Here we use inhibition kinetics and binding assays to assess whether ramoplanin and the related compound enduracidin have an intrinsic preference for one step over the other. Both ramoplanin and enduracidin preferentially inhibit the transglycosylation step of peptidoglycan biosynthesis compared with the MurG step. The basis for stronger inhibition is a greater affinity for the transglycosylase substrate Lipid II over the MurG substrate Lipid I. These results provide compelling evidence that ramoplanin's and enduracidin's primary cellular target is the transglycosylation step of peptidoglycan biosynthesis.
脂糖缩肽抗生素瑞莫拉宁被认为通过与通向成熟肽聚糖的途径中的中间体结合来抑制细菌细胞壁的生物合成,这会干扰进一步的酶促加工。瑞莫拉宁可以阻断两个连续的酶促步骤,但关于是否优先抑制其中一个步骤尚无确切信息。在这里,我们使用抑制动力学和结合试验来评估瑞莫拉宁和相关化合物持久霉素是否对其中一个步骤具有内在偏好。与MurG步骤相比,瑞莫拉宁和持久霉素均优先抑制肽聚糖生物合成的转糖基化步骤。更强抑制作用的基础是对转糖基酶底物脂质II的亲和力比对MurG底物脂质I的亲和力更大。这些结果提供了令人信服的证据,表明瑞莫拉宁和持久霉素的主要细胞靶点是肽聚糖生物合成的转糖基化步骤。