Tang Jie, Zhang Li, Chen Zhiqiang, Xing Yuxiang, Cheng Jianping
Department of Engineering Physics, Tsinghua University, Bejing 100084, People's Republic of China.
Phys Med Biol. 2006 Aug 21;51(16):N287-93. doi: 10.1088/0031-9155/51/16/N03. Epub 2006 Aug 2.
Helical cone-beam CT is used widely nowadays because of its rapid scan speed and efficient utilization of x-ray dose. Recently, an exact reconstruction algorithm for helical cone-beam CT was proposed (Zou and Pan 2004a Phys. Med. Biol. 49 941-59). The algorithm is referred to as a backprojection-filtering (BPF) algorithm. This BPF algorithm for a helical cone-beam CT with a flat-panel detector (FPD-HCBCT) requires minimum data within the Tam-Danielsson window and can naturally address the problem of ROI reconstruction from data truncated in both longitudinal and transversal directions. In practical CT systems, detectors are expensive and always take a very important position in the total cost. Hence, we work on an exact reconstruction algorithm for a CT system with a detector of the smallest size, i.e., a curved PI detector fitting the Tam-Danielsson window. The reconstruction algorithm is derived following the framework of the BPF algorithm. Numerical simulations are done to validate our algorithm in this study.
由于螺旋锥束CT扫描速度快且能有效利用X射线剂量,如今它被广泛应用。最近,一种用于螺旋锥束CT的精确重建算法被提出(邹和潘,2004a,《物理医学与生物学》49卷,941 - 59页)。该算法被称为反投影滤波(BPF)算法。这种用于平板探测器螺旋锥束CT(FPD - HCBCT)的BPF算法在Tam - Danielsson窗内所需数据最少,并且能够自然地解决从纵向和横向截断数据进行感兴趣区域(ROI)重建的问题。在实际的CT系统中,探测器价格昂贵,并且在总成本中总是占据非常重要的地位。因此,我们致力于为具有最小尺寸探测器(即符合Tam - Danielsson窗的弯曲PI探测器)的CT系统开发一种精确重建算法。该重建算法是在BPF算法的框架下推导出来的。在本研究中进行了数值模拟以验证我们的算法。