Yu Lifeng, Xia Dan, Zou Yu, Sidky Emil Y, Bian Junguo, Pan Xiaochuan
Department of Radiology, Mayo Clinic, Rochester, MN, USA.
Phys Med Biol. 2007 Sep 21;52(18):5497-508. doi: 10.1088/0031-9155/52/18/003. Epub 2007 Aug 31.
In the last few years, mathematically exact algorithms, including the backprojection-filtration (BPF) algorithm, have been developed for accurate image reconstruction in helical cone-beam CT. The BPF algorithm requires minimum data, and can reconstruct region-of-interest (ROI) images from data containing truncations. However, similar to other existing reconstruction algorithms for helical cone-beam CT, the BPF algorithm involves a backprojection with a spatially varying weighting factor, which is computationally demanding and, more importantly, can lead to undesirable numerical properties in reconstructed images. In this work, we develop a rebinned BPF algorithm in which the backprojection invokes no spatially varying weighting factor for accurate image reconstruction from helical cone-beam projections. This rebinned BPF algorithm is computationally more efficient and numerically more stable than the original BPF algorithm, while it also retains the nice properties of the original BPF algorithm such as minimum data requirement and ROI-image reconstruction from truncated data. We have also performed simulation studies to validate and evaluate the rebinned BPF algorithm.
在过去几年中,已经开发出了包括反投影滤波(BPF)算法在内的数学精确算法,用于螺旋锥束CT中的精确图像重建。BPF算法所需数据量最少,并且可以从包含截断的数据中重建感兴趣区域(ROI)图像。然而,与其他现有的螺旋锥束CT重建算法类似,BPF算法涉及具有空间变化加权因子的反投影,这在计算上要求很高,更重要的是,可能会在重建图像中导致不良的数值特性。在这项工作中,我们开发了一种重新分箱的BPF算法,其中反投影不调用空间变化的加权因子,以便从螺旋锥束投影中进行精确的图像重建。这种重新分箱的BPF算法在计算上比原始BPF算法更高效,在数值上更稳定,同时它还保留了原始BPF算法的良好特性,如最少的数据要求和从截断数据中重建ROI图像。我们还进行了模拟研究,以验证和评估重新分箱的BPF算法。