Suppr超能文献

用于自适应放疗的具有空间变化质量的锥束CT重建:一项原理验证研究。

Reconstructing cone-beam CT with spatially varying qualities for adaptive radiotherapy: a proof-of-principle study.

作者信息

Lu Wenting, Yan Hao, Gu Xuejun, Tian Zhen, Luo Ouyang, Yang Liu, Zhou Linghong, Cervino Laura, Wang Jing, Jiang Steve, Jia Xun

机构信息

Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA. Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.

出版信息

Phys Med Biol. 2014 Oct 21;59(20):6251-66. doi: 10.1088/0031-9155/59/20/6251. Epub 2014 Sep 26.

Abstract

With the aim of maximally reducing imaging dose while meeting requirements for adaptive radiation therapy (ART), we propose in this paper a new cone beam CT (CBCT) acquisition and reconstruction method that delivers images with a low noise level inside a region of interest (ROI) and a relatively high noise level outside the ROI. The acquired projection images include two groups: densely sampled projections at a low exposure with a large field of view (FOV) and sparsely sampled projections at a high exposure with a small FOV corresponding to the ROI. A new algorithm combining the conventional filtered back-projection algorithm and the tight-frame iterative reconstruction algorithm is also designed to reconstruct the CBCT based on these projection data. We have validated our method on a simulated head-and-neck (HN) patient case, a semi-real experiment conducted on a HN cancer patient under a full-fan scan mode, as well as a Catphan phantom under a half-fan scan mode. Relative root-mean-square errors (RRMSEs) of less than 3% for the entire image and ~1% within the ROI compared to the ground truth have been observed. These numbers demonstrate the ability of our proposed method to reconstruct high-quality images inside the ROI. As for the part outside ROI, although the images are relatively noisy, it can still provide sufficient information for radiation dose calculations in ART. Dose distributions calculated on our CBCT image and on a standard CBCT image are in agreement, with a mean relative difference of 0.082% inside the ROI and 0.038% outside the ROI. Compared with the standard clinical CBCT scheme, an imaging dose reduction of approximately 3-6 times inside the ROI was achieved, as well as an 8 times outside the ROI. Regarding computational efficiency, it takes 1-3 min to reconstruct a CBCT image depending on the number of projections used. These results indicate that the proposed method has the potential for application in ART.

摘要

为了在满足自适应放射治疗(ART)要求的同时最大程度降低成像剂量,我们在本文中提出了一种新的锥束CT(CBCT)采集和重建方法,该方法在感兴趣区域(ROI)内提供低噪声水平的图像,而在ROI外提供相对较高的噪声水平。采集的投影图像包括两组:低曝光且大视野(FOV)的密集采样投影,以及高曝光且对应于ROI的小FOV的稀疏采样投影。还设计了一种结合传统滤波反投影算法和紧框架迭代重建算法的新算法,以基于这些投影数据重建CBCT。我们已在模拟头颈部(HN)患者病例、在全扇形扫描模式下对HN癌症患者进行的半真实实验以及半扇形扫描模式下的Catphan体模上验证了我们的方法。与真实情况相比,整个图像的相对均方根误差(RRMSE)小于3%,ROI内约为1%。这些数据证明了我们提出的方法在ROI内重建高质量图像的能力。至于ROI外的部分,尽管图像噪声较大,但仍可为ART中的辐射剂量计算提供足够的信息。在我们的CBCT图像和标准CBCT图像上计算的剂量分布一致,ROI内的平均相对差异为0.082%,ROI外为0.038%。与标准临床CBCT方案相比,ROI内的成像剂量降低了约3至6倍,ROI外降低了8倍。关于计算效率,根据使用的投影数量,重建一幅CBCT图像需要1至3分钟。这些结果表明,所提出的方法具有在ART中应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca69/4197814/471b6aa8e551/nihms632513f1.jpg

相似文献

5
GPU-based iterative cone-beam CT reconstruction using tight frame regularization.基于 GPU 的紧框架正则化迭代锥形束 CT 重建。
Phys Med Biol. 2011 Jul 7;56(13):3787-807. doi: 10.1088/0031-9155/56/13/004. Epub 2011 May 31.

引用本文的文献

1
Adaptive radiotherapy for head and neck cancer.头颈部癌的自适应放射治疗。
Cancers Head Neck. 2020 Jan 9;5:1. doi: 10.1186/s41199-019-0046-z. eCollection 2020.

本文引用的文献

3
GPU-based high-performance computing for radiation therapy.基于 GPU 的放射治疗高性能计算。
Phys Med Biol. 2014 Feb 21;59(4):R151-82. doi: 10.1088/0031-9155/59/4/R151. Epub 2014 Feb 3.
6
Approximate truncation robust computed tomography--ATRACT.近似截断稳健计算断层摄影术——ATRACT。
Phys Med Biol. 2013 Sep 7;58(17):6133-48. doi: 10.1088/0031-9155/58/17/6133. Epub 2013 Aug 14.
8
Low-dose X-ray CT reconstruction via dictionary learning.基于字典学习的低剂量 X 射线 CT 重建。
IEEE Trans Med Imaging. 2012 Sep;31(9):1682-97. doi: 10.1109/TMI.2012.2195669. Epub 2012 Apr 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验