Squire John M, Bekyarova Tanya, Farman Gerrie, Gore David, Rajkumar Ganeshalingam, Knupp Carlo, Lucaveche Carmen, Reedy Mary C, Reedy Michael K, Irving Thomas C
Biological Structure & Function Section, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
J Mol Biol. 2006 Sep 1;361(5):823-38. doi: 10.1016/j.jmb.2006.06.072. Epub 2006 Aug 1.
Low-angle X-ray diffraction patterns from relaxed fruitfly (Drosophila) flight muscle recorded on the BioCat beamline at the Argonne Advanced Photon Source (APS) show many features similar to such patterns from the "classic" insect flight muscle in Lethocerus, the giant water bug, but there is a characteristically different pattern of sampling of the myosin filament layer-lines, which indicates the presence of a superlattice of myosin filaments in the Drosophila A-band. We show from analysis of the structure factor for this lattice that the sampling pattern is exactly as expected if adjacent four-stranded myosin filaments, of repeat 116 nm, are axially shifted in the hexagonal A-band lattice by one-third of the 14.5 nm axial spacing between crowns of myosin heads. In addition, electron micrographs of Drosophila and other flies (e.g. the house fly (Musca) and the flesh fly (Sarcophaga)) combined with image processing confirm that the same A-band superlattice occurs in all of these flies; it may be a general property of the Diptera. The different A-band organisation in flies compared with Lethocerus, which operates at a much lower wing beat frequency (approximately 30 Hz) and requires a warm-up period, may be a way of optimising the myosin and actin filament geometry needed both for stretch activation at the higher wing beat frequencies (50 Hz to 1000 Hz) of flies and their need for a rapid escape response.
在阿贡先进光子源(APS)的BioCat光束线上记录的果蝇(Drosophila)松弛飞行肌肉的低角度X射线衍射图谱显示出许多与巨水蝽(Lethocerus)“经典”昆虫飞行肌肉的此类图谱相似的特征,但肌球蛋白丝层线的采样模式存在显著差异,这表明果蝇A带中存在肌球蛋白丝的超晶格。我们通过对该晶格结构因子的分析表明,如果相邻的重复116nm的四链肌球蛋白丝在六边形A带晶格中沿轴向移动肌球蛋白头部冠之间14.5nm轴向间距的三分之一,则采样模式与预期完全一致。此外,果蝇和其他苍蝇(如家蝇(Musca)和肉蝇(Sarcophaga))的电子显微照片与图像处理相结合,证实所有这些苍蝇中都存在相同的A带超晶格;这可能是双翅目的一个普遍特性。与巨水蝽相比,苍蝇的A带组织不同,巨水蝽的翅膀拍打频率要低得多(约30Hz),并且需要预热期,这可能是一种优化肌球蛋白和肌动蛋白丝几何结构的方式,这种几何结构对于苍蝇在较高翅膀拍打频率(50Hz至1000Hz)下的拉伸激活以及它们快速逃避反应的需求都是必需的。