Dickinson Michael, Farman Gerrie, Frye Mark, Bekyarova Tanya, Gore David, Maughan David, Irving Thomas
Department of Bioengineering, California Institute of Technology, Pasadena, California 91125, USA.
Nature. 2005 Jan 20;433(7023):330-4. doi: 10.1038/nature03230.
Flight in insects--which constitute the largest group of species in the animal kingdom--is powered by specialized muscles located within the thorax. In most insects each contraction is triggered not by a motor neuron spike but by mechanical stretch imposed by antagonistic muscles. Whereas 'stretch activation' and its reciprocal phenomenon 'shortening deactivation' are observed to varying extents in all striated muscles, both are particularly prominent in the indirect flight muscles of insects. Here we show changes in thick-filament structure and actin-myosin interactions in living, flying Drosophila with the use of synchrotron small-angle X-ray diffraction. To elicit stable flight behaviour and permit the capture of images at specific phases within the 5-ms wingbeat cycle, we tethered flies within a visual flight simulator. We recorded images of 340 micros duration every 625 micros to create an eight-frame diffraction movie, with each frame reflecting the instantaneous structure of the contractile apparatus. These time-resolved measurements of molecular-level structure provide new insight into the unique ability of insect flight muscle to generate elevated power at high frequency.
昆虫是动物界中物种数量最多的群体,其飞行由位于胸部的特殊肌肉提供动力。在大多数昆虫中,每次收缩并非由运动神经元的尖峰触发,而是由拮抗肌施加的机械拉伸引发。虽然在所有横纹肌中都不同程度地观察到了“拉伸激活”及其相反现象“缩短失活”,但这两种现象在昆虫的间接飞行肌中尤为显著。在这里,我们利用同步加速器小角X射线衍射技术,展示了活的飞行果蝇中粗肌丝结构和肌动蛋白 - 肌球蛋白相互作用的变化。为了引发稳定的飞行行为,并在5毫秒的振翅周期内的特定阶段捕捉图像,我们将果蝇系在视觉飞行模拟器中。我们每隔625微秒记录一次持续340微秒的图像,以创建一个八帧的衍射电影,每一帧都反映了收缩装置的瞬时结构。这些分子水平结构的时间分辨测量为昆虫飞行肌在高频下产生高功率的独特能力提供了新的见解。