McGuigan John A S, Kay James W, Elder Hugh Y
Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
Prog Biophys Mol Biol. 2006 Nov;92(3):333-70. doi: 10.1016/j.pbiomolbio.2006.05.001. Epub 2006 Jul 3.
Using simulated Ca2+ and Mg2+ buffers, methods proposed to measure both ligand purity and the apparent dissociation constant (Kapp) were investigated regarding (1) predicted accuracy of both parameters and (2) generality of the solution. The Bers' Ca2+ macroelectrode method [Bers, D. M., 1982 A simple method for the determination of free [Ca] in Ca-EGTA solutions Am. J. Physiol. 242, C404-C408] cannot be used with Mg2+ -macroelectrodes and is partly arbitrary since the linear part of the Scatchard plot is judged subjectively. Iterative methods have therefore been introduced. Iteration based on Bers' method or the lumped interference in the Nicolsky-Eisenman equation also failed with Mg2+ macroelectrodes. The Oiki et al., method [Oiki, S., Yomamoto, T., Okada, Y., 1994. Apparent stability constants and purity of Ca-chelating agents evaluated using Ca-sensitive electrodes by the double-log optimization method Cell Calcium 15, 209-46.] cannot be applied to Mg2+ macroelectrodes. The pH titration method of Moisescu and Pusch (Pflügers, Arch., 355, R122, 1975) predicted EGTA purity and Ca2+ contamination, but Kapp values for EGTA were approximate. It cannot be applied to Mg2+ binding. The partition method [Godt, R.E., 1974. Calcium-activated tension of skinned muscle fibres of the frog. Dependence on magnesium adenosine triphosphate concentration J. Gen. Physiol. 63, 722-739.] only approximately estimated the K(app). Calibration, maintaining contaminating [Ca2+]/[Mg2+] at < 1micromol l(-1), and setting standards by dilution, is the ultimate check of calculated ionised concentrations, although technically difficult. The macroelectrode method of Lüthi et al. [1997. Calibration of Mg2+ -selective macromolecules down to 1 micromol l(-1) in intracellular and Ca+ - containing extracellular solutions. Exp. Physiol. 82, 453-467] accurately predicted purity and Kapp at pKapp values > 4 and was independent of electrode characteristics. It is considered the method of choice. Macroelectrode primary calibration should be carried out in solutions varying from 0.5 to 10 mmol l(-1) combined with either Ca-EGTA or Mg-EDTA buffers; the [Ca2+] and [Mg2+] in other buffer ligands can be measured in a secondary calibration.
使用模拟的Ca2+和Mg2+缓冲液,针对以下两个方面研究了用于测量配体纯度和表观解离常数(Kapp)的方法:(1)两个参数的预测准确性;(2)该解决方案的通用性。Bers的Ca2+宏电极法[Bers, D. M., 1982一种测定Ca-EGTA溶液中游离[Ca]的简单方法。美国生理学杂志。242, C404 - C408]不能用于Mg2+宏电极,并且部分具有主观性,因为Scatchard图的线性部分是主观判断的。因此引入了迭代方法。基于Bers方法或Nicolsky - Eisenman方程中的集总干扰进行的迭代在Mg2+宏电极上也失败了。Oiki等人的方法[Oiki, S., Yomamoto, T., Okada, Y., 1994. 使用Ca敏感电极通过双对数优化方法评估Ca螯合剂的表观稳定性常数和纯度。细胞钙15, 209 - 46.]不能应用于Mg2+宏电极。Moisescu和Pusch的pH滴定法(Pflügers, Arch., 355, R122, 1975)预测了EGTA的纯度和Ca2+污染,但EGTA的Kapp值是近似的。它不能应用于Mg2+结合。分配法[Godt, R.E., 1974. 青蛙皮肤肌肉纤维的钙激活张力。对镁三磷酸腺苷浓度的依赖性。普通生理学杂志。63, 722 - 739.]仅大致估计了K(app)。校准,将污染的[Ca2+]/[Mg2+]保持在<1微摩尔/升(-1),并通过稀释设置标准,是对计算出的离子浓度的最终检验,尽管在技术上有难度。Lüthi等人的宏电极法[1997. 在细胞内和含Ca+的细胞外溶液中将Mg2+选择性大分子校准至1微摩尔/升(-1)。实验生理学。82, 453 - 467]在pKapp值>4时准确预测了纯度和Kapp,并且与电极特性无关。它被认为是首选方法。宏电极的一次校准应在0.5至10毫摩尔/升(-1)的溶液中结合Ca - EGTA或Mg - EDTA缓冲液进行;其他缓冲配体中的[Ca2+]和[Mg2+]可以在二次校准中测量。