Suppr超能文献

核小体DNA柔韧性的计算研究。

A computational study of nucleosomal DNA flexibility.

作者信息

Ruscio Jory Z, Onufriev Alexey

机构信息

Genetics, Bioinformatics & Computational Biology Program, Virginia Tech, Blacksburg, VA, USA.

出版信息

Biophys J. 2006 Dec 1;91(11):4121-32. doi: 10.1529/biophysj.106.082099. Epub 2006 Aug 4.

Abstract

Molecular dynamics simulations of the nucleosome core particle and its isolated DNA free in solution are reported. The simulations are based on the implicit solvent methodology and provide insights into the nature of large-scale structural fluctuations and flexibility of the nucleosomal DNA. In addition to the kinked regions previously identified in the x-ray structure of the nucleosome, the simulations support the existence of a biochemically identified distorted region of the DNA. Comparison of computed relative free energies shows that formation of the kinks is associated with little, if any, energy cost relative to a smooth, ideal conformation of the DNA superhelix. Isolated nucleosomal DNA is found to be considerably more flexible than expected for a 147 bp stretch of DNA based on its canonical persistence length of 500 A. Notably, the significant bending of the DNA observed in our simulations occurs without breaking of Watson-Crick bonds. The computed relative stability of bent conformations is sensitive to the ionic strength of the solution in the physiological range; the sensitivity suggests possible experiments that might provide further insights into the structural origins of the unusual flexibility of the DNA.

摘要

报道了核小体核心颗粒及其在溶液中游离的分离DNA的分子动力学模拟。这些模拟基于隐式溶剂方法,深入了解了核小体DNA大规模结构波动和灵活性的本质。除了先前在核小体X射线结构中确定的扭结区域外,模拟还支持存在一个经生化鉴定的DNA扭曲区域。计算得到的相对自由能比较表明,相对于DNA超螺旋的平滑、理想构象,扭结的形成几乎没有能量成本(如果有的话)。发现分离的核小体DNA比基于其500 Å的标准持久长度的147 bp DNA片段预期的要灵活得多。值得注意的是,在我们的模拟中观察到的DNA的显著弯曲发生时并未破坏沃森-克里克键。计算得到的弯曲构象的相对稳定性对生理范围内溶液的离子强度敏感;这种敏感性表明可能进行的实验,这些实验可能会进一步深入了解DNA异常灵活性的结构起源。

相似文献

1
A computational study of nucleosomal DNA flexibility.
Biophys J. 2006 Dec 1;91(11):4121-32. doi: 10.1529/biophysj.106.082099. Epub 2006 Aug 4.
2
Molecular dynamics simulations of a nucleosome and free DNA.
J Biomol Struct Dyn. 2005 Jun;22(6):673-86. doi: 10.1080/07391102.2005.10507034.
4
Structural mechanics of DNA wrapping in the nucleosome.
J Mol Biol. 2010 Feb 19;396(2):264-79. doi: 10.1016/j.jmb.2009.11.040. Epub 2009 Nov 27.
5
Two arginine residues suppress the flexibility of nucleosomal DNA in the canonical nucleosome core.
PLoS One. 2015 Mar 18;10(3):e0120635. doi: 10.1371/journal.pone.0120635. eCollection 2015.
6
Nucleosomes in solution exist as a mixture of twist-defect states.
J Mol Biol. 2005 Jan 7;345(1):103-14. doi: 10.1016/j.jmb.2004.10.012.
7
Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability.
J Mol Biol. 1999 Mar 12;286(5):1293-301. doi: 10.1006/jmbi.1998.2575.
8
Structure and dynamics of nucleosomal DNA.
Biopolymers. 2003 Apr;68(4):547-56. doi: 10.1002/bip.10317.
10
Brownian dynamics simulation of DNA unrolling from the nucleosome.
J Phys Chem B. 2009 Mar 5;113(9):2639-46. doi: 10.1021/jp806137e.

引用本文的文献

1
Unveiling the Conformational Dynamics of the Histone Tails Using Markov State Modeling.
J Chem Theory Comput. 2025 May 13;21(9):4921-4938. doi: 10.1021/acs.jctc.5c00196. Epub 2025 Apr 27.
2
Implicit Solvent with Explicit Ions Generalized Born Model in Molecular Dynamics: Application to DNA.
J Chem Theory Comput. 2024 Oct 8;20(19):8724-8739. doi: 10.1021/acs.jctc.4c00833. Epub 2024 Sep 16.
3
Conformational Dynamics of the Nucleosomal Histone H2B Tails Revealed by Molecular Dynamics Simulations.
J Chem Inf Model. 2024 Jun 24;64(12):4709-4726. doi: 10.1021/acs.jcim.4c00059. Epub 2024 Jun 12.
4
A Closed-Form, Analytical Approximation for Apparent Surface Charge and Electric Field of Molecules.
ACS Omega. 2022 Jul 19;7(30):26123-26136. doi: 10.1021/acsomega.2c01484. eCollection 2022 Aug 2.
5
Histone tails cooperate to control the breathing of genomic nucleosomes.
PLoS Comput Biol. 2021 Jun 3;17(6):e1009013. doi: 10.1371/journal.pcbi.1009013. eCollection 2021 Jun.
6
Generalized Born Implicit Solvent Models for Biomolecules.
Annu Rev Biophys. 2019 May 6;48:275-296. doi: 10.1146/annurev-biophys-052118-115325. Epub 2019 Mar 11.
7
Towards quantitative analysis of gene regulation by enhancers.
Epigenomics. 2017 Sep;9(9):1219-1231. doi: 10.2217/epi-2017-0061. Epub 2017 Aug 11.
8
DNA mutation motifs in the genes associated with inherited diseases.
PLoS One. 2017 Aug 2;12(8):e0182377. doi: 10.1371/journal.pone.0182377. eCollection 2017.
9
Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling.
Biophys J. 2017 Mar 28;112(6):1094-1104. doi: 10.1016/j.bpj.2017.02.022.
10
Partially Assembled Nucleosome Structures at Atomic Detail.
Biophys J. 2017 Feb 7;112(3):460-472. doi: 10.1016/j.bpj.2016.10.041. Epub 2016 Dec 28.

本文引用的文献

1
Generalized theory of semiflexible polymers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031906. doi: 10.1103/PhysRevE.73.031906. Epub 2006 Mar 7.
2
The Amber biomolecular simulation programs.
J Comput Chem. 2005 Dec;26(16):1668-88. doi: 10.1002/jcc.20290.
3
Biocompatible force sensor with optical readout and dimensions of 6 nm3.
Nano Lett. 2005 Jul;5(7):1509-14. doi: 10.1021/nl050875h.
4
Electrostatic mechanism of nucleosomal array folding revealed by computer simulation.
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8180-5. doi: 10.1073/pnas.0408867102. Epub 2005 May 26.
5
Molecular dynamics simulations of a nucleosome and free DNA.
J Biomol Struct Dyn. 2005 Jun;22(6):673-86. doi: 10.1080/07391102.2005.10507034.
6
Cyclization of short DNA fragments and bending fluctuations of the double helix.
Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5397-402. doi: 10.1073/pnas.0500983102. Epub 2005 Apr 4.
7
DNA twisting flexibility and the formation of sharply looped protein-DNA complexes.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3645-50. doi: 10.1073/pnas.0409059102. Epub 2005 Feb 17.
8
Localized single-stranded bubble mechanism for cyclization of short double helix DNA.
Phys Rev Lett. 2004 Sep 3;93(10):108108. doi: 10.1103/PhysRevLett.93.108108.
9
Simulation and modeling of nucleic acid structure, dynamics and interactions.
Curr Opin Struct Biol. 2004 Jun;14(3):360-7. doi: 10.1016/j.sbi.2004.05.001.
10
Spontaneous sharp bending of double-stranded DNA.
Mol Cell. 2004 May 7;14(3):355-62. doi: 10.1016/s1097-2765(04)00210-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验