Suppr超能文献

理解RNA和DNA双链体的相对柔韧性:拉伸与扭曲-拉伸耦合

Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling.

作者信息

Bao Lei, Zhang Xi, Shi Ya-Zhou, Wu Yuan-Yan, Tan Zhi-Jie

机构信息

Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.

Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China; Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China.

出版信息

Biophys J. 2017 Mar 28;112(6):1094-1104. doi: 10.1016/j.bpj.2017.02.022.

Abstract

The flexibility of double-stranded (ds) RNA and dsDNA is crucial for their biological functions. Recent experiments have shown that the flexibility of dsRNA and dsDNA can be distinctively different in the aspects of stretching and twist-stretch coupling. Although various studies have been performed to understand the flexibility of dsRNA and dsDNA, there is still a lack of deep understanding of the distinctive differences in the flexibility of dsRNA and dsDNA helices as pertains to their stretching and twist-stretch coupling. In this work, we have explored the relative flexibility in stretching and twist-stretch coupling between dsRNA and dsDNA by all-atom molecular dynamics simulations. The calculated stretch modulus and twist-stretch coupling are in good accordance with the existing experiments. Our analyses show that the differences in stretching and twist-stretch coupling between dsRNA and dsDNA helices are mainly attributed to their different (A- and B-form) helical structures. Stronger basepair inclination and slide in dsRNA is responsible for the apparently weaker stretching rigidity versus that of dsDNA, and the opposite twist-stretch coupling for dsRNA and dsDNA is also attributed to the stronger basepair inclination in dsRNA than in dsDNA. Our calculated macroscopic elastic parameters and microscopic analyses are tested and validated by different force fields for both dsRNA and dsDNA.

摘要

双链(ds)RNA和dsDNA的柔韧性对其生物学功能至关重要。最近的实验表明,dsRNA和dsDNA的柔韧性在拉伸和扭曲-拉伸耦合方面可能存在显著差异。尽管已经进行了各种研究来了解dsRNA和dsDNA的柔韧性,但对于dsRNA和dsDNA螺旋在拉伸和扭曲-拉伸耦合方面柔韧性的显著差异仍缺乏深入理解。在这项工作中,我们通过全原子分子动力学模拟探索了dsRNA和dsDNA在拉伸和扭曲-拉伸耦合方面的相对柔韧性。计算得到的拉伸模量和扭曲-拉伸耦合与现有实验结果吻合良好。我们的分析表明,dsRNA和dsDNA螺旋在拉伸和扭曲-拉伸耦合方面的差异主要归因于它们不同的(A-型和B-型)螺旋结构。dsRNA中更强的碱基对倾斜和滑动导致其拉伸刚性明显弱于dsDNA,dsRNA和dsDNA相反的扭曲-拉伸耦合也归因于dsRNA中比dsDNA更强的碱基对倾斜。我们计算得到的宏观弹性参数和微观分析通过针对dsRNA和dsDNA的不同力场进行了测试和验证。

相似文献

1
Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling.
Biophys J. 2017 Mar 28;112(6):1094-1104. doi: 10.1016/j.bpj.2017.02.022.
2
Structural Flexibility of DNA-RNA Hybrid Duplex: Stretching and Twist-Stretch Coupling.
Biophys J. 2019 Jul 9;117(1):74-86. doi: 10.1016/j.bpj.2019.05.018. Epub 2019 May 23.
3
Understanding the mechanical response of double-stranded DNA and RNA under constant stretching forces using all-atom molecular dynamics.
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7049-7054. doi: 10.1073/pnas.1705642114. Epub 2017 Jun 20.
4
Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis.
Nucleic Acids Res. 2015 Dec 2;43(21):10143-56. doi: 10.1093/nar/gkv1028. Epub 2015 Oct 12.
7
Nanoscale structures and mechanics of peptide nucleic acids.
Nanoscale. 2022 May 5;14(17):6620-6635. doi: 10.1039/d1nr04239d.
8
Sequence-dependent mechanical properties of double-stranded RNA.
Nanoscale. 2019 Nov 28;11(44):21471-21478. doi: 10.1039/c9nr07516j. Epub 2019 Nov 5.
9
Blind predictions of DNA and RNA tweezers experiments with force and torque.
PLoS Comput Biol. 2014 Aug 7;10(8):e1003756. doi: 10.1371/journal.pcbi.1003756. eCollection 2014 Aug.

引用本文的文献

1
Nanopore Translocation Reveals Electrophoretic Force on Noncanonical RNA:DNA Double Helix.
ACS Nano. 2024 Jun 11;18(23):15013-15024. doi: 10.1021/acsnano.4c01466. Epub 2024 May 31.
2
Effect of temperature on anisotropic bending elasticity of dsRNA: an all-atom molecular dynamics simulation.
RSC Adv. 2024 May 28;14(24):17170-17177. doi: 10.1039/d4ra02354d. eCollection 2024 May 22.
3
Systematic Comparison of Atomistic Force Fields for the Mechanical Properties of Double-Stranded DNA.
J Chem Theory Comput. 2024 Mar 12;20(5):2261-2272. doi: 10.1021/acs.jctc.3c01089. Epub 2024 Feb 27.
5
Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding.
Molecules. 2023 Jun 17;28(12):4833. doi: 10.3390/molecules28124833.
6
Sensitivity of the RNA Structure to Ion Conditions as Probed by Molecular Dynamics Simulations of Common Canonical RNA Duplexes.
J Chem Inf Model. 2023 Apr 10;63(7):2133-2146. doi: 10.1021/acs.jcim.2c01438. Epub 2023 Mar 29.
7
Ab initio predictions for 3D structure and stability of single- and double-stranded DNAs in ion solutions.
PLoS Comput Biol. 2022 Oct 19;18(10):e1010501. doi: 10.1371/journal.pcbi.1010501. eCollection 2022 Oct.
8
Diameter Dependent Melting and Softening of dsDNA Under Cylindrical Confinement.
Front Chem. 2022 May 2;10:879746. doi: 10.3389/fchem.2022.879746. eCollection 2022.
9
Accurate Sequence-Dependent Coarse-Grained Model for Conformational and Elastic Properties of Double-Stranded DNA.
J Chem Theory Comput. 2022 May 10;18(5):3239-3256. doi: 10.1021/acs.jctc.2c00138. Epub 2022 Apr 8.
10
RNA Secondary Structures Regulate Adsorption of Fragments onto Flat Substrates.
ACS Omega. 2021 Nov 19;6(48):32823-32831. doi: 10.1021/acsomega.1c04774. eCollection 2021 Dec 7.

本文引用的文献

1
Opposing Effects of Multivalent Ions on the Flexibility of DNA and RNA.
Phys Rev Lett. 2016 Jul 8;117(2):028101. doi: 10.1103/PhysRevLett.117.028101. Epub 2016 Jul 6.
2
Assessing the Current State of Amber Force Field Modifications for DNA.
J Chem Theory Comput. 2016 Aug 9;12(8):4114-27. doi: 10.1021/acs.jctc.6b00186. Epub 2016 Jul 7.
3
Transitions of Double-Stranded DNA Between the A- and B-Forms.
J Phys Chem B. 2016 Aug 25;120(33):8449-56. doi: 10.1021/acs.jpcb.6b02155. Epub 2016 May 11.
4
The thermodynamics and kinetics of a nucleotide base pair.
J Chem Phys. 2016 Mar 21;144(11):115101. doi: 10.1063/1.4944067.
5
Understanding the kinetic mechanism of RNA single base pair formation.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):116-21. doi: 10.1073/pnas.1517511113. Epub 2015 Dec 22.
6
Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions.
Biophys J. 2015 Dec 15;109(12):2654-2665. doi: 10.1016/j.bpj.2015.11.006.
7
Tuning RNA Flexibility with Helix Length and Junction Sequence.
Biophys J. 2015 Dec 15;109(12):2644-2653. doi: 10.1016/j.bpj.2015.10.039.
8
Revisiting the Anomalous Bending Elasticity of Sharply Bent DNA.
Biophys J. 2015 Dec 1;109(11):2338-51. doi: 10.1016/j.bpj.2015.10.016.
9
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
10
Parmbsc1: a refined force field for DNA simulations.
Nat Methods. 2016 Jan;13(1):55-8. doi: 10.1038/nmeth.3658. Epub 2015 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验