Rychkov Georgy N, Ilatovskiy Andrey V, Nazarov Igor B, Shvetsov Alexey V, Lebedev Dmitry V, Konev Alexander Y, Isaev-Ivanov Vladimir V, Onufriev Alexey V
Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Institute of Physics, Nanotechnology and Telecommunications, NRU Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California.
Biophys J. 2017 Feb 7;112(3):460-472. doi: 10.1016/j.bpj.2016.10.041. Epub 2016 Dec 28.
The evidence is now overwhelming that partially assembled nucleosome states (PANS) are as important as the canonical nucleosome structure for the understanding of how accessibility to genomic DNA is regulated in cells. We use a combination of molecular dynamics simulation and atomic force microscopy to deliver, in atomic detail, structural models of three key PANS: the hexasome (H2A·H2B)·(H3·H4), the tetrasome (H3·H4), and the disome (H3·H4). Despite fluctuations of the conformation of the free DNA in these structures, regions of protected DNA in close contact with the histone core remain stable, thus establishing the basis for the understanding of the role of PANS in DNA accessibility regulation. On average, the length of protected DNA in each structure is roughly 18 basepairs per histone protein. Atomistically detailed PANS are used to explain experimental observations; specifically, we discuss interpretation of atomic force microscopy, Förster resonance energy transfer, and small-angle x-ray scattering data obtained under conditions when PANS are expected to exist. Further, we suggest an alternative interpretation of a recent genome-wide study of DNA protection in active chromatin of fruit fly, leading to a conclusion that the three PANS are present in actively transcribing regions in a substantial amount. The presence of PANS may not only be a consequence, but also a prerequisite for fast transcription in vivo.
现在有压倒性的证据表明,部分组装的核小体状态(PANS)对于理解细胞中基因组DNA的可及性如何被调控与经典核小体结构同样重要。我们结合分子动力学模拟和原子力显微镜,以原子细节给出了三种关键PANS的结构模型:六聚体(H2A·H2B)·(H3·H4)、四聚体(H3·H4)和二聚体(H3·H4)。尽管这些结构中游离DNA的构象存在波动,但与组蛋白核心紧密接触的受保护DNA区域保持稳定,从而为理解PANS在DNA可及性调控中的作用奠定了基础。平均而言,每个结构中受保护DNA的长度约为每个组蛋白18个碱基对。原子细节的PANS被用于解释实验观察结果;具体来说,我们讨论了在预期存在PANS的条件下获得的原子力显微镜、荧光共振能量转移和小角X射线散射数据的解释。此外,我们对最近一项关于果蝇活性染色质中DNA保护的全基因组研究提出了另一种解释,得出的结论是这三种PANS大量存在于活跃转录区域。PANS的存在不仅可能是体内快速转录的结果,也可能是其前提条件。