Suppr超能文献

响应高渗胁迫时丝裂原活化蛋白激酶信号特异性分析:使用一种对类似物敏感的HOG1等位基因

Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.

作者信息

Westfall Patrick J, Thorner Jeremy

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA.

出版信息

Eukaryot Cell. 2006 Aug;5(8):1215-28. doi: 10.1128/EC.00037-06.

Abstract

When confronted with a marked increase in external osmolarity, budding yeast (Saccharomyces cerevisiae) cells utilize a conserved mitogen-activated protein kinase (MAPK) signaling cascade (the high-osmolarity glycerol or HOG pathway) to elicit cellular responses necessary to permit continued growth. One input that stimulates the HOG pathway requires the integral membrane protein and putative osmosensor Sho1, which recruits and enables activation of the MAPK kinase kinase Ste11. In mutants that lack the downstream MAPK kinase (pbs2Delta) or the MAPK (hog1Delta) of the HOG pathway, Ste11 activated by hyperosmotic stress is able to inappropriately stimulate the pheromone response pathway. This loss of signaling specificity is known as cross talk. To determine whether it is the Hog1 polypeptide per se or its kinase activity that is necessary to prevent cross talk, we constructed a fully functional analog-sensitive allele of HOG1 to permit acute inhibition of this enzyme without other detectable perturbations of the cell. We found that the catalytic activity of Hog1 is required continuously to prevent cross talk between the HOG pathway and both the pheromone response and invasive growth pathways. Moreover, contrary to previous reports, we found that the kinase activity of Hog1 is necessary for its stress-induced nuclear import. Finally, our results demonstrate a role for active Hog1 in maintaining signaling specificity under conditions of persistently high external osmolarity.

摘要

当面对外部渗透压显著增加时,出芽酵母(酿酒酵母)细胞利用保守的丝裂原活化蛋白激酶(MAPK)信号级联反应(高渗透压甘油或HOG途径)来引发细胞做出持续生长所需的反应。刺激HOG途径的一个输入信号需要完整膜蛋白和假定的渗透压感受器Sho1,它招募并激活MAPK激酶激酶Ste11。在缺乏HOG途径下游MAPK激酶(pbs2Delta)或MAPK(hog1Delta)的突变体中,由高渗应激激活的Ste11能够不适当地刺激信息素反应途径。这种信号特异性的丧失被称为串扰。为了确定是Hog1多肽本身还是其激酶活性对于防止串扰是必需的,我们构建了一个功能完全的HOG1类似物敏感等位基因,以允许对该酶进行急性抑制,而不会对细胞造成其他可检测到的干扰。我们发现,Hog1的催化活性需要持续存在以防止HOG途径与信息素反应途径和侵袭性生长途径之间发生串扰。此外,与之前的报道相反,我们发现Hog1的激酶活性对于其应激诱导的核输入是必需的。最后,我们的结果证明了活性Hog1在持续高外部渗透压条件下维持信号特异性中的作用。

相似文献

5
Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis.
Mol Biol Cell. 2004 Feb;15(2):532-42. doi: 10.1091/mbc.e03-07-0521. Epub 2003 Oct 31.
7
10
Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms.
Sci Signal. 2014 Feb 25;7(314):ra21. doi: 10.1126/scisignal.2004780.

引用本文的文献

2
Engineering transcriptional regulatory networks for improving second-generation fuel ethanol production in .
Synth Syst Biotechnol. 2024 Oct 28;10(1):207-217. doi: 10.1016/j.synbio.2024.10.006. eCollection 2025.
3
Shared and redundant proteins coordinate signal cross-talk between MAPK pathways in yeast.
Mol Biol Cell. 2024 Oct 1;35(10):ar126. doi: 10.1091/mbc.E24-06-0270. Epub 2024 Jul 31.
4
Mutation in yl-HOG1 represses the filament-to-yeast transition in the dimorphic yeast Yarrowia lipolytica.
Microb Cell Fact. 2023 Aug 16;22(1):155. doi: 10.1186/s12934-023-02161-8.
5
Rate thresholds in cell signaling have functional and phenotypic consequences in non-linear time-dependent environments.
Front Cell Dev Biol. 2023 Mar 21;11:1124874. doi: 10.3389/fcell.2023.1124874. eCollection 2023.
6
Strain-dependent differences in coordination of yeast signalling networks.
FEBS J. 2023 Apr;290(8):2097-2114. doi: 10.1111/febs.16689. Epub 2022 Dec 4.
7
TORC1 Signaling Controls the Stability and Function of α-Arrestins Aly1 and Aly2.
Biomolecules. 2022 Mar 31;12(4):533. doi: 10.3390/biom12040533.
9
Building predictive signaling models by perturbing yeast cells with time-varying stimulations resulting in distinct signaling responses.
STAR Protoc. 2021 Jul 7;2(3):100660. doi: 10.1016/j.xpro.2021.100660. eCollection 2021 Sep 17.
10
A rate threshold mechanism regulates MAPK stress signaling and survival.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2004998118.

本文引用的文献

7
Regulation of the osmoregulatory HOG MAPK cascade in yeast.
J Biochem. 2004 Sep;136(3):267-72. doi: 10.1093/jb/mvh135.
8
When the stress of your environment makes you go HOG wild.
Science. 2004 Nov 26;306(5701):1511-2. doi: 10.1126/science.1104879.
9
Jekyll and Hyde in the microbial world.
Science. 2004 Nov 26;306(5701):1509-11. doi: 10.1126/science.1104677.
10
Pheromone signaling mechanisms in yeast: a prototypical sex machine.
Science. 2004 Nov 26;306(5701):1508-9. doi: 10.1126/science.1104568.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验