1Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
Sci Signal. 2014 Feb 25;7(314):ra21. doi: 10.1126/scisignal.2004780.
To cope with environmental high osmolarity, the budding yeast Saccharomyces cerevisiae activates the mitogen-activated protein kinase (MAPK) Hog1, which controls an array of osmoadaptive responses. Two independent, but functionally redundant, osmosensing systems involving the transmembrane sensor histidine kinase Sln1 or the tetraspanning membrane protein Sho1 stimulate the Hog1 MAPK cascade. Furthermore, the Sho1 signaling branch itself also involves the two functionally redundant osmosensors Hkr1 and Msb2. However, any single osmosensor (Sln1, Hkr1, or Msb2) is sufficient for osmoadaptation. We found that the signaling mechanism by which Hkr1 or Msb2 stimulated the Hog1 cascade was specific to each osmosensor. Specifically, activation of Hog1 by Msb2 required the scaffold protein Bem1 and the actin cytoskeleton. Bem1 bound to the cytoplasmic domain of Msb2 and thus recruited the kinases Ste20 and Cla4 to the membrane, where either of them can activate the kinase Ste11. The cytoplasmic domain of Hkr1 also contributed to the activation of Ste11 by Ste20, but through a mechanism that involved neither Bem1 nor the actin cytoskeleton. Furthermore, we found a PXXP motif in Ste20 that specifically bound to the Sho1 SH3 (Src homology 3) domain. This interaction between Ste20 and Sho1 contributed to the activation of Hog1 by Hkr1, but not by Msb2. These differences between Hkr1 and Msb2 may enable differential regulation of these two proteins and provide a mechanism through Msb2 to connect regulation of the cytoskeleton with the response to osmotic stress.
为了应对环境中的高渗透压,出芽酵母酿酒酵母激活丝裂原活化蛋白激酶(MAPK)Hog1,该激酶控制着一系列渗透适应反应。两个独立但功能上冗余的渗透压感应系统涉及跨膜传感器组氨酸激酶 Sln1 或四跨膜蛋白 Sho1,刺激 Hog1 MAPK 级联反应。此外,Sho1 信号分支本身还涉及两个功能上冗余的渗透压传感器 Hkr1 和 Msb2。然而,任何单个渗透压传感器(Sln1、Hkr1 或 Msb2)都足以适应渗透胁迫。我们发现,Hkr1 或 Msb2 刺激 Hog1 级联反应的信号机制对每个渗透压传感器都是特异的。具体而言,Msb2 激活 Hog1 需要支架蛋白 Bem1 和肌动蛋白细胞骨架。Bem1 与 Msb2 的细胞质结构域结合,从而将激酶 Ste20 和 Cla4 募集到膜上,其中任一个激酶都可以激活激酶 Ste11。Hkr1 的细胞质结构域也有助于 Ste20 通过非 Bem1 或肌动蛋白细胞骨架机制激活 Ste11。此外,我们发现 Ste20 中的一个 PXXP 基序特异性结合 Sho1 的 SH3(Src 同源 3)结构域。Ste20 和 Sho1 之间的这种相互作用有助于 Hkr1 激活 Hog1,但不能激活 Msb2。Hkr1 和 Msb2 之间的这些差异可能使这两种蛋白质的调节具有差异性,并提供一种通过 Msb2 将细胞骨架的调节与对渗透压胁迫的反应连接起来的机制。