Qutub Amina A, Popel Aleksander S
Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 613 Traylor Bldg, 720 Rutland Avenue, Baltimore, MD 21205, USA.
J Cell Sci. 2006 Aug 15;119(Pt 16):3467-80. doi: 10.1242/jcs.03087.
Hypoxia-inducible factor-1, HIF1, transcriptionally activates over 200 genes vital for cell homeostasis and angiogenesis. We developed a computational model to gain a detailed quantitative understanding of how HIF1 acts to sense oxygen and respond to hypoxia. The model consists of kinetic equations describing the intracellular variation of 17 compounds, including HIF1, iron, prolyl hydroxylase, oxygen, ascorbate, 2-oxoglutarate, von Hippel Lindau protein and associated complexes. We tested an existing hypothesis of a switch-like change in HIF1 expression in response to a gradual decrease in O2 concentration. Our model predicts that depending on the molecular environment, such as intracellular iron levels, the hypoxic response varies considerably. We show HIF1-activated cellular responses can be divided into two categories: a steep, switch-like response to O2 and a gradual one. Discovery of this dual response prompted comparison of two therapeutic strategies, ascorbate and iron supplementation, and prolyl hydroxylase targeting, to predict under what microenvironments either effectively increases HIF1alpha hydroxylation. Results provide crucial insight into the effects of iron and prolyl hydroxylase on oxygen sensing. The model advances quantitative molecular level understanding of HIF1 pathways--an endeavor that will help elucidate the diverse responses to hypoxia found in cancer, ischemia and exercise.
缺氧诱导因子-1(HIF1)可转录激活200多个对细胞稳态和血管生成至关重要的基因。我们开发了一个计算模型,以详细定量了解HIF1如何感知氧气并对缺氧作出反应。该模型由描述17种化合物细胞内变化的动力学方程组成,这些化合物包括HIF1、铁、脯氨酰羟化酶、氧气、抗坏血酸、2-氧代戊二酸、冯·希佩尔-林道蛋白及相关复合物。我们测试了一个关于HIF1表达随氧气浓度逐渐降低而发生类似开关样变化的现有假说。我们的模型预测,根据分子环境,如细胞内铁水平,缺氧反应会有很大差异。我们表明,HIF1激活的细胞反应可分为两类:对氧气的陡峭的、类似开关的反应和逐渐的反应。这种双重反应的发现促使我们比较两种治疗策略,即补充抗坏血酸和铁以及靶向脯氨酰羟化酶,以预测在何种微环境下这两种策略能有效增加HIF1α羟化。研究结果为铁和脯氨酰羟化酶对氧气感知的影响提供了关键见解。该模型推动了对HIF1通路的定量分子水平理解——这一努力将有助于阐明在癌症、缺血和运动中发现的对缺氧的多种反应。