Braha Bianca, Tintemann Herbert, Krauss Gudrun, Ehrman Jim, Bärlocher Felix, Krauss Gerd-Joachim
Department of Biochemistry/Biotechnology, Division of Ecological and Plant Biochemistry, Martin-Luther-University, Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany.
Biometals. 2007 Feb;20(1):93-105. doi: 10.1007/s10534-006-9018-y. Epub 2006 Aug 10.
Biochemical responses to cadmium (Cd2+) and copper (Cu2+) exposure were compared in two strains of the aquatic hyphomycete (AQH) Heliscus lugdunensis. One strain (H4-2-4) had been isolated from a heavy metal polluted site, the other (H8-2-1) from a moderately polluted habitat. Conidia of the two strains differed in shape and size. Intracellular accumulation of Cd2+ and Cu2+ was lower in H4-2-4 than in H8-2-1. Both strains synthesized significantly more glutathione (GSH), cysteine (Cys) and gamma-glutamylcysteine (gamma-EC) in the presence of 25 and 50 microM Cd2+, but quantities and rates of synthesis were different. In H4-2-4, exposure to 50 microM Cd2+ increased GSH levels to 262% of the control; in H8-2-1 it increased to 156%. Mycelia of the two strains were analysed for peroxidase, dehydroascorbate reductase, glutathione reductase and glucose-6-phosphate dehydrogenase. With Cd2+ exposure, peroxidase activity increased in both strains. Cu2+ stress increased dehydroascorbate reductase activity in H4-2-4 but not in H8-2-1. Dehydroascorbate reductase and glucose-6-phosphate dehydrogenase activities progressively declined in the presence of Cd2+, indicating a correlation with Cd2+ accumulation in both strains. Cd2+ and Cu2+ exposure decreased glutathione reductase activity.